67 resultados para Via algaliada a três carris


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ligands for peroxisome proliferator-activated receptor gamma (PPAR-gamma), such as 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) have been implicated as a new class of anti-inflammatory compounds with possible clinical applications. Based on this concept, this investigation was designed to determine the effect of 15d-PGJ(2)-mediated activation of PPAR-gamma ligand on neutrophil migration after an inflammatory stimulus and clarify the underlying molecular mechanisms using a mouse model of peritonitis. Our results demonstrated that 15d-PGJ(2) administration decreases leukocyte rolling and adhesion to the inflammated mesenteric tissues by a mechanism dependent on NO. Specifically, pharmacological inhibitors of NO synthase remarkably abrogated the 15d-PGJ(2)-mediated suppression of neutrophil migration to the inflammatory site. Moreover, inducible NOS(-/-) mice were not susceptible to 15d-PGJ(2)-mediated suppression of neutrophil migration to the inflammatory sites when compared with their wild type. In addition, 15d-PGJ(2)-mediated suppression of neutrophil migration appeared to be independent of the production of cytokines and chemokines, since their production were not significantly affected in the carrageenan-injected peritoneal cavities. Finally, up-regulation of carrageenan-triggered ICAM-I expression in the mesenteric microcirculation vessels was abrogated by pretreatment of wild-type mice with 15d-PGJ(2), whereas 15d-PGJ(2) inhibited F-actin rearrangement process in neutrophils. Taken together these findings demonstrated that 15d-PGJ(2) suppresses inflammation-initiated neutrophil migration in a mechanism dependent on NO production in mesenteric tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rationale Recovering the neutrophil migration to the infectious focus improves survival in severe sepsis. Recently, we demonstrated that the cystathionine gamma-lyase (CSE)/hydrogen sulfide (H(2)S) pathway increased neutrophil recruitment to inflammatory focus during sterile inflammation. Objectives: To evaluate if H(2)S administration increases neutrophil migration to infectious focus and survival of mice. Methods. Sepsis was induced by cecal ligation and puncture (CLP) Measurements and Main Results. The pretreatments of mice with H2S donors (NaHS or Lawesson`s reagent) improved leukocyte rolling/adhesion in the mesenteric microcirculation as well as neutrophil migration. Consequently, bacteremia levels were reduced, hypotension and lung lesions were prevented, and the survival rate increased from approximately 13% to approximately 80% Even when treatment was delayed (6 h after CLP), a highly significant reduction in mortality compared with untreated mice was observed Moreover, H(2)S pretreatment prevented the down-regulation of CXCR2 and L-selectin and the up-regulation of CD11b and G protein-coupled receptor kinase 2 in neutrophils during sepsis. H(2)S also prevented the reduction of intercellular adhesion molecule-1 expression in the endothelium of the mesenteric microcirculation in severe sepsis Confirming the critical role of H(2)S on sepsis outcome, pretreatment with dl-propargylglycine (a CSE inhibitor) inhibited neutrophil migration to the infectious focus, enhanced lung lesions, and induced high mortality in mice subjected to nonsevere sepsis (from 0 to similar to 80%). The beneficial effects of H(2)S were blocked by glibenclamide (a ATP-dependent K(+) channel blocker). Conclusions: These results showed that H(2)S restores neutrophil migration to the infectious focus and improves survival outcome in severe sepsis by an ATP-dependent K(+) channel-dependent mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims We demonstrated c-Src activation as a novel non-genomic signalling pathway for aldosterone in vascular smooth muscle cells (VSMCs). Here, we investigated molecular mechanisms and biological responses of this phenomenon, focusing on the role of lipid rafts/caveolae and platelet-derived growth factor receptor (PDGFR) in c-Src-regulated proinflammatory responses by aldosterone. Methods and results Studies were performed in cultured VSMCs from Wistar-Kyoto (WKY) rats and caveolin-1 knockout (Cav 1(-/-)) and wild-type mice. Aldosterone stimulation increased c-Src phosphorylation and trafficking to lipid rafts/caveolae. Cholesterol depletion with methyl-beta-cyclodextrin abrogated aldosterone-induced phosphorylation of c-Src and its target, Pyk2. Aldosterone effects were recovered by cholesterol reload. Aldosterone-induced c-Src and cortactin phosphorylation was reduced in caveolin-1-silenced and Cav 1(-/-) VSMCs. PDGFR is phosphorylated by aldosterone within cholesterol-rich fractions of VSMCs. AG1296, a PDGFR inhibitor, prevented c-Src phosphorylation and translocation to cholesterol-rich fractions. Aldosterone induced an increase in adhesion molecule protein content and promoted monocyte adhesion to VSMCs, responses that were inhibited an by cholesterol depletion, caveolin-1 deficiency, AG1296 and PP2, a c-Src inhibitor. Mineralocorticoid receptor (MR) content in flotillin-2-rich fractions and co-immunoprecipitation with c-Src and PDGFR increased upon aldosterone stimulation, indicating MR-lipid raft/signalling association. Conclusion We demonstrate that aldosterone-mediated c-Src trafficking/activation and proinflammatory signalling involve lipid rafts/caveolae via PDGFR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cannabinoids have been shown to modulate central autonomic regulation and baroreflex control of blood pressure. Both CB1 and CB2 cannabinoid receptors have been described in the nucleus tractus solitarius (NTS), which receives direct afferent projections of cardiovascular reflexes. in the present study we evaluated the effects of WIN 55212-2 (WIN), a cannabinoid agonist, on fast neurotransmission in the NTS. We recorded spontaneous post-synaptic currents using the whole-cell configuration in NTS cells in brainstem slices from young rats (25-30 days old). Application of 5 mu M WIN inhibited the frequency of both glutamatergic and GABAergic sPSCs, without affecting their amplitudes. Effects of WIN were not blocked by application of the CB1 antagonist AM251, the CB2 antagonist AM630 or the varmiloid receptor TRPV1 antagonist AMG9810, suggesting that the effect of WIN is via a non-CB1 non-CB2 receptor. Neither the CB1/CB2 agonist HU210 nor the CB1 agonist ACPA affected the frequency of sPSCs. We conclude WIN inhibits the neurotransmission in the NTS of young rats via a receptor distinct from CB1 or CB2. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously, it was demonstrated that the heme/heme oxygenase (HO)/carbon monoxide (CO) pathway inhibits neutrophil recruitment during the inflammatory response. Herein, we addressed whether the inhibitory effect of the HO pathway on neutrophil adhesion and migration involves the reduction of intracellular adhesion molecule type (ICAM)-1 and beta(2)-integrin expression. Mice pretreated with a specific inhibitor of inducible HO (HO-1), zinc protoporphyrin (ZnPP) IX, exhibit enhanced neutrophil adhesion and migration induced by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS). These findings are associated with an increase in ICAM-1 expression on mesentery venular endothelium. In accordance, HO-1 inhibition did not enhance LPS-induced neutrophil migration and adhesion in ICAM-1-deficient mice. Furthermore, the treatment with a CO donor (dimanganese decacarbonyl, DMDC) that inhibits adhesion and migration of the neutrophils, reduced LPS-induced ICAM-1 expression. Moreover, neither DMDC nor ZnPP IX treatments changed LPS-induced beta(2)-integrin expression on neutrophils. The effect of CO on ICAM-1 expression seems to be dependent on soluble guanylate cyclase (sGC) activation, since 1H-(1,2,4)oxadiazolo (4,3-a)quinoxalin-1-one (sGC inhibitor) prevented the observed CO effects. Finally, it was observed that the nitric oxide (NO) anti-inflammatory effects on ICAM-1 expression appear to be indirectly mediated by HO-1 activation, since the inhibition of HO-1 prevented the inhibitory effect of the NO donor (S-nitroso-N-acetylpenicillamine) on LPS-induced ICAM-1 expression. Taken together, these results suggest that CO inhibits ICAM-1 expression on endothelium by a mechanism dependent on sGC activation. Thus, our findings identify the HO-1/CO/guanosine 3`5`-cyclic monophosphate pathway as a potential target for the development of novel pharmacotherapy to control neutrophil migration in inflammatory diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective-To evaluate the effects of increasing doses of remifentanil hydrochloride administered via constant rate infusion (CRI) on the minimum alveolar concentration (MAC) of isoflurane in cats. Animals-6 healthy adult cats. Procedures-For each cat, 2 experiments were performed (2-week interval). On each study day, anesthesia was induced and maintained with isoflurane; a catheter was placed in a cephalic vein for the administration of lactated Ringer`s solution or remifentanil CRIs, and a catheter was placed in the jugular vein for collection of blood samples for blood gas analyses. On the first study day, individual basal MAC (MAC(Basal)) was determined for each cat. On the second study day, 3 remifentanil CRIs (0.25, 0.5, and 1.0 mu g/kg/min) were administered (in ascending order); for each infusion, at least 30 minutes elapsed before determination of MAC (designated as MAC(R0.25`) MAC(R0.5`) and MACR(R1.0`) respectively). A 15-minute washout period was allowed between CRIs. A control MAC (MAC Control) was determined after the last remifentanil infusion. Results-Mean +/- SD MAC(Basal) and MAC(Control) values at sea level did not differ significantly (1.66 +/- 0.08% and 1.52 +/- 0.21%, respectively). The MAC values determined for each remifentanil CRI did not differ significantly. However, MACR(0.25`) MAC(R0.5`) and MAC(R1.0) were significantly decreased, compared with MAC(Basal`) by 23.4 +/- 79%, 29.8 +/- 8.3%, and 26.0 +/- 9.4%, respectively. Conclusions and Clinical Relevance-The 3 doses of remifentanil administered via CRI resulted in a similar degree of isoflurane MAC reduction in adult cats, indicating that a ceiling effect was achieved following administration of the lowest dose. (Am J Vet Res 2009;70:581-588)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effects of gamma-radiation on cells isolated from the longitudinal smooth muscle layer of the guinea pig ileum, a relatively radioresistant tissue. Single doses (up to 50 Gy) reduced the amount of sarcoplasmatic reticulum and condensed the myofibrils, as shown by electron microscopy 3 days post-irradiation. After that, contractility of smooth muscle strips was reduced. Ca(2+) handling was altered after irradiation, as shown in fura-2 loaded cells, with elevated basal intracellular Ca(2+), reduced amount of intrareticular Ca(2+), and reduced capacitive Ca(2+) entry. Radiation also induced apoptosis, judged from flow cytometry of cells loaded with proprium iodide. Electron microscopy showed that radiation caused condensation of chromatin in dense masses around the nuclear envelope, the presence of apoptotic bodies, fragmentation of the nucleus, detachment of cells from their neighbors, and reductions in cell volume. Radiation also caused activation of caspase 12. Apoptosis was reduced by the administration of the caspase inhibitor Z-Val-Ala-Asp-fluoromethyl-ketone methyl ester (Z-VAD-FIVIK) during the 3 day period after irradiation, and by the chelator of intracellular Ca(2+), 1,2-bis(o-aminophenoxy)ethane-N,N,N`,N`-tetraacetic acid (BAPTA), from 1 h before until 2 h after irradiation. BAPTA also reduced the effects of radiation on contractility, basal intracellular Ca(2+), amount of intrareticular Ca(2+), capacitative Ca(2+) entry, and apoptosis. In conclusion, the effects of gamma radiation on contractility, Ca(2+) handling, and apoptosis appear due to a toxic action of intracellular Ca(2+). Ca(2+)-induced damage to the sarcoplasmatic reticulum seems a key event in impaired Ca(2+) handling and apoptosis induced by gamma-radiation. (c) 2008 Elsevier B.V. All rights reserved.