90 resultados para Telomere Homeostasis
Resumo:
Loss-of-function mutations in telomerase complex genes can cause bone marrow failure, dyskeratosis congenita, and acquired aplastic anemia, both diseases that predispose to acute myeloid leukemia. Loss of telomerase function produces short telomeres, potentially resulting in chromosome recombination, end-to-end fusion, and recognition as damaged DNA. We investigated whether mutations in telomerase genes also occur in acute myeloid leukemia. We screened bone marrow samples from 133 consecutive patients with acute myeloid leukemia and 198 controls for variations in TERT and TERC genes. An additional 89 patients from a second cohort, selected based on cytogenetic status, and 528 controls were further examined for mutations. A third cohort of 372 patients and 384 controls were specifically tested for one TERT gene variant. In the first cohort, 11 patients carried missense TERT gene variants that were not present in controls (P<0.0001); in the second cohort, TERT mutations were associated with trisomy 8 and inversion 16. Mutation germ-line origin was demonstrated in 5 patients from whom other tissues were available. Analysis of all 3 cohorts (n = 594) for the most common gene variant (A1062T) indicated a prevalence 3 times higher in patients than in controls (n = 1,110; P = 0.0009). Introduction of TERT mutants into telomerase-deficient cells resulted in loss of enzymatic activity by haploinsufficiency. Inherited mutations in TERT that reduce telomerase activity are risk factors for acute myeloid leukemia. We propose that short and dysfunctional telomeres limit normal stem cell proliferation and predispose for leukemia by selection of stem cells with defective DNA damage responses that are prone to genome instability.
Resumo:
Objectives: To determine if systemic stress affects the biological reactions occurring during orthodontic tooth movement. Methods: Four groups of male 10 week-old Wistar rats were used. Group A animals (N=10) were restrained for one hour per day for 40 days; Group B animals (N=10) were restrained for one hour per day for three days; Group C (N=10) and Group D (N=8) animals were unrestrained. The upper left first molars in the rats in Groups A (long-term stress), B (short-term stress) and C (control) were moved mesially during the last 14 days of the experiment. The animals in Group D (N=8) were used for body weight and hormonal dosage comparisons only. They were not subjected to any stress and did not have appliances fitted. All animals were killed at 18 weeks of age and blood collected for measurement of plasma corticosterone. Tooth movement was measured with an electronic caliper. The right and left hemi-maxillae of five rats from each group were removed and the number of tartrate-resistant acid phosphatase (TRAP) positive cells, defined as osteoclasts, adjacent to the mesial roots of the upper first molars counted. The contralateral side in each animal served as the control (split-mouth design). Results: Corticosterone levels were significantly higher in the stressed groups (Groups A and B) than in the control group (Group C). Tooth movement was significantly greater in Group A (long-term stress) compared with Group B (short-term stress) and Group C (control), which did not differ from each other. There were significantly more osteoclasts in the long-term stress group than in the short-term stress and control groups. Conclusion: Persistent systemic stress increases bone resorption during orthodontic tooth movement. Systemic stress may affect the rate of tooth movement during orthodontic treatment.
Resumo:
Some patients with liver disease progress to cirrhosis, but the risk factors for cirrhosis development are unknown. Dyskeratosis congenita, an inherited bone marrow failure syndrome associated with mucocutaneous anomalies, pulmonary fibrosis, and cirrhosis, is caused by germline mutations of genes in the telomerase complex. We examined whether telomerase mutations also occurred in sporadic cirrhosis. In all, 134 patients with cirrhosis of common etiologies treated at the Liver Research Institute, University of Arizona, between May 2008 and July 2009, and 528 healthy subjects were screened for variation in the TERT and TERC genes by direct sequencing; an additional 1,472 controls were examined for the most common genetic variation observed in patients. Telomere length of leukocytes was measured by quantitative polymerase chain reaction. Functional effects of genetic changes were assessed by transfection of mutation-containing vectors into telomerase-deficient cell lines, and telomerase activity was measured in cell lysates. Nine of the 134 patients with cirrhosis (7%) carried a missense variant in TERT, resulting in a cumulative carrier frequency significantly higher than in controls (P = 0.0009). One patient was homozygous and eight were heterozygous. The allele frequency for the most common missense TERT variant was significantly higher in patients with cirrhosis (2.6%) than in 2,000 controls (0.7%; P = 0.0011). One additional patient carried a TERC mutation. The mean telomere length of leukocytes in patients with cirrhosis, including six mutant cases, was shorter than in age-matched controls (P = 0.0004). Conclusion: Most TERT gene variants reduced telomerase enzymatic activity in vitro. Loss-of-function telomerase gene variants associated with short telomeres are risk factors for sporadic cirrhosis. (HEPATOLOGY 2011;53:1600-1607)
Resumo:
We report a case of acute monoblastic leukemia showing a jumping translocation with the MLL gene in a 17-year-old male. Classic cytogenetic and spectral karyotyping revealed a complex karyotype, and fluorescence in situ hybridization (FISH) demonstrated amplification of the MLL gene followed by translocation to chromosomes 15q, 17q, and 19q. In addition, molecular analyses showed a high expression of AURKA and AURKB genes. It is already known that overexpression of Aurora kinases is associated with chromosomal instability and poor prognosis. The formation of jumping translocations is a rare cytogenetic event and there is evidence pointing toward preferential involvement of the heterochromatin region of donor chromosomes and the telomere ends of recipient chromosomes. Jumping translocation with the MLL gene rearrangement is an uncommon phenomenon reported in leukemia cytogenetics. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The idea that within the bulk of leukemic cells there are immature progenitors which are intrinsically resistant to chemotherapy and able to repopulate the tumor after treatment is not recent. Nevertheless, the term leukemia stem cells (LSCs) has been adopted recently to describe these immature progenitors based on the fact that they share the most relevant features of the normal hematopoetic stem cells (HSCs), i.e. the self-renewal potential and quiescent status. LSCs differ from their normal counterparts and from the more differentiated leukemic cells regarding the default status of pathways regulating apoptosis, cell cycle, telomere maintenance and transport pumps activity. In addition, unique features regarding the interaction of these cells with the microenvironment have been characterized. Therapeutic strategies targeting these unique features are at different stages of development but the reported results are promising. The aim of this review is, by taking acute myeloid leukemia (AML) as a bona fide example, to discuss some of the mechanisms used by the LSCs to survive and the strategies which could be used to eradicate these cells.
Resumo:
Background Hypersensitivity or uncontrolled responses against dietary antigens can lead to inflammatory disorders like food allergy and current models reflect a variety of causes but do not reveal the detailed modulation of gut immunity in response to food antigens after breakdown in mucosal tolerance. Objective To develop and characterize a murine model for food-induced intestinal inflammation and to demonstrate the modulation of gut immune response by dietary allergenic antigens. Methods C57BL/6 mice were sensitized with peanut proteins, challenged with peanut seeds and their sera and gut segments were collected for subsequent analyses. Results Sensitization and challenged with peanut seeds led to alterations in gut architecture with inflammatory response characterized by oedema in lamina propria and cell infiltrate composed mainly by eosinophils, mast cells, phagocytes, natural killer and plasma cells, together with low percentage of gamma delta(+) and CD4(+)CD25(+)Foxp3(+) cells in Peyer`s patches. These animals also presented high levels of specific IgE and IgG1 in sera and modulation of mucosal immunity was mediated by increased expression of GATA-3, IL-4, IL-13 and TNF-alpha in contrast to low IFN-gamma in the gut. Conclusion A murine model for food-induced intestinal inflammation was characterized in which modulation of gut immunity occurs by peanut antigens in consequence of T-helper type 2 (Th2) allergic response and failure of regulatory mechanisms necessary for mucosa homeostasis, resembling food allergy. This work shed some light on the understanding of the pathogenesis of gastrointestinal disorders and intolerance in the gut and supports the development of therapies for food-related enteropathies like food allergy, focusing on gut-specific immune response.
Resumo:
Magnesium may influence blood pressure by modulating vascular tone and structure through its effects on myriad biochemical reactions that control vascular contraction/dilation, growth/apoptosis, differentiation and inflammation. Magnesium acts as a calcium channel antagonist, it stimulates production of vasodilator prostacyclins and nitric oxide and it alters vascular responses to vasoconstrictor agents. Mammalian cells regulate Mg(2+) concentration through special transport systems that have only recently been characterized. Magnesium efflux occurs via Na(2+)-dependent and Na(2+)-independent pathways. Mg(2+) influx is controlled by recently cloned transporters including Mrs2p, SLC41A1, SLC41A2, ACDP2, MagT1, TRPM6 and TRPM7. Alterations in some of these systems may contribute to hypomagnesemia and intracellular Mg(2+) deficiency in hypertension and other cardiovascular pathologies. In particular, increased Mg(2+) efflux through dysregulation of the vascular Na(+)/Mg(2+) exchanger and decreased Mg(2+) influx due to defective vascular and renal TRPM6/7 expression/activity may be important in altered vasomotor tone and consequently in blood pressure regulation. The present review discusses the role of Mg(2+) in vascular biology and implications in hypertension and focuses on the putative transport systems that control magnesium homeostasis in the vascular system. Much research is still needed to clarify the exact mechanisms of cardiovascular Mg(2+) regulation and the implications of aberrant cellular Mg(2+) transport and altered cation status in the pathogenesis of hypertension and other cardiovascular diseases.
Resumo:
The aim of this study was to unravel the mechanisms by which interleukin (IL)-10, a potent pleiotropic cytokine, modulates alveolar bone homeostasis in C57BL/6 wild-type (WT) and IL-10 knockout (IL-10 KO) mice, evaluated at 8, 24, and 48 wk of age. Interleukin-10 KO mice presented significant alveolar bone loss when compared with WT mice, and this was not associated with changes in leukocyte counts or bacterial load. The levels of expression of messenger RNA (mRNA) for tumor necrosis factor-alpha (TNF-alpha), IL-1 beta, IL-6, transforming growth factor-beta (TGF-beta), receptor activator of nuclear factor kappa B ligand (RANKL), osteoprotegerin (OPG), and matrix metalloproteinase 13 (MMP13) were similar between both strains, whereas a significant decrease of tissue inhibitor of metalloproteinase 1 (TIMP1) mRNA expression was found at 48 wk in IL-10 KO mice. The osteoblast markers core binding factor alpha1 (CBFA1) and type I collagen (COL-I) were expressed at similar levels in both strains, whereas the levels of alkaline phosphatase (ALP) and osteocalcin (OCN), and those of the osteocyte markers phosphate-regulating gene endopeptidases (PHEX) and dentin matrix protein 1 (DMP1) were significantly lower in IL-10 KO mice. Our results demonstrate that the alveolar bone loss in the absence of IL-10 was associated with a reduced expression of osteoblast and osteocyte markers, an effect independent of microbial, inflammatory or bone-resorptive pathways.
Resumo:
Rationale Hyperaldosteronism, important in hypertension, is associated with electrolyte alterations, including hypomagnesemia, through unknown mechanisms. Objective To test whether aldosterone influences renal Mg(2+) transporters, (transient receptor potential melastatin (TRPM) 6, TRPM7, paracellin-1) leading to hypomagnesemia, hypertension and target organ damage and whether in a background of magnesium deficiency, this is exaggerated. Methods and results Aldosterone effects in mice selectively bred for high-normal (MgH) or low (MgL) intracellular Mg(2+) were studied. Male MgH and MgL mice received aldosterone (350 mu g/kg per day, 3 weeks). SBP was elevated in MgL. Aldosterone increased blood pressure and albuminuria and increased urinary Mg(2+) concentration in MgH and MgL, with greater effects in MgL. Activity of renal TRPM6 and TRPM7 was lower in vehicle-treated MgL than MgH. Aldosterone increased activity of TRPM6 in MgH and inhibited activity in MgL. TRPM7 and paracellin-1 were unaffected by aldosterone. Aldosterone-induced albuminuria in MgL was associated with increased renal fibrosis, increased oxidative stress, activation of mitogen-activated protein kinases and nuclear factor-NF-kappa B and podocyte injury. Mg(2+) supplementation (0.75% Mg(2+)) in aldosterone-treated MgL normalized plasma Mg(2+), increased TRPM6 activity and ameliorated hypertension and renal injury. Hence, in a model of inherited hypomagnesemia, TRPM6 and TRPM7, but not paracellin-1, are downregulated. Aldosterone further decreased TRPM6 activity in hypomagnesemic mice, a phenomenon associated with hypertension and kidney damage. Such effects were prevented by Mg(2+) supplementation. Conclusion Amplified target organ damage in aldosterone-induced hypertension in hypomagnesemic conditions is associated with dysfunctional Mg(2+)-sensitive renal TRPM6 channels. Novel mechanisms for renal effects of aldosterone and insights into putative beneficial actions of Mg(2+), particularly in hyperaldosteronism, are identified. J Hypertens 29: 1400-1410 (C) 2011 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
Secretion of vasopressin (VP), oxytocin (OT) and atrial natriuretic peptide (ANP) is an essential mechanism for the maintenance of hydromineral homeostasis. Secretion of these hormones is modulated by several circulating factors, including oestradiol. However, it remains unclear how oestradiol exerts this modulation. In the present study we investigated the participation of oestradiol in the secretion of VP, OT and ANP and in activation of vasopressinergic and oxytocinergic neurones of the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus in response to extracellular volume expansion (EVE). For this purpose, ovariectomised (OVX) rats treated for 7 days with vehicle (corn oil, 0.1 ml/rat, OVX+O group) or oestradiol (oestradiol cypionate, 10 mu g/kg, OVX+E group) were subjected to either isotonic (0.15 m NaCl, 2 ml/100 g b.w., i.v.) or hypertonic (0.30 m NaCl, 2 ml/100 g b.w., i.v.) EVE. Blood samples were collected for plasma VP, OT and ANP determination. Another group of rats was subjected to cerebral perfusion, and brain sections were processed for c-Fos-VP and c-Fos-OT double-labelling immunohistochemistry. In OVX+O rats, we observed that both isotonic and hypertonic EVE increased plasma OT and ANP concentrations, although no changes were observed in VP secretion. Oestradiol replacement did not alter hormonal secretion in response to isotonic EVE, but it increased VP secretion and potentiated plasma OT and ANP concentrations in response to hypertonic EVE. Immunohistochemical data showed that, in the OVX+O group, hypertonic EVE increased the number of c-Fos-OT and c-Fos-VP double-labelled neurones in the PVN and SON. Oestradiol replacement did not alter neuronal activation in response to isotonic EVE, but it potentiated vasopressinergic and oxytocinergic neuronal activation in the medial magnocellular PVN (PaMM) and SON. Taken together, these results suggest that oestradiol increases the responsiveness of vasopressinergic and oxytocinergic magnocellular neurones in the PVN and SON in response to osmotic stimulation.
Resumo:
Corticotrophin-releasing factor (CRF) and alpha-melanocyte-stimulating hormone (alpha-MSH), both of which are synthesized by hypothalamic neurons, play an essential role in the control of energy homeostasis. Neuroendocrine and behavioural responses induced by lipopolyssacharide (LPS) have been shown to involve prostaglandin-mediated pathways. This study investigated the effects of prostaglandin on CRF and alpha-MSH neuronal activities in LPS-induced anorexia. Male Wistar rats were pretreated with indomethacin (10 mg kg(-1); i.p.) or vehicle; 15 min later they received LPS (500 mu g kg(-1); i.p.) or saline injection. Food intake, hormone responses and Fos-CRF and Fos-alpha-MSH immunoreactivity in the paraventricular and arcuate nuclei, respectively, were evaluated. In comparison with saline treatment, LPS administration induced lower food intake and increased plasma ACTH and corticosterone levels, as well as an increase in Fos-CRF and Fos-alpha-MSH double-labelled neurons in vehicle-pretreated rats. In contrast, indomethacin treatment partly reversed the hypophagic effect, blunted the hormonal increase and blocked the Fos-CRF and Fos-alpha-MSH hypothalamic double labelling increase in response to the LPS stimulus. These data demonstrate that the activation of pro-opiomelanocortin and CRF hypothalamic neurons following LPS administration is at least partly mediated by the prostaglandin pathway and is likely to be involved in the modulation of feeding behaviour during endotoxaemia.
Resumo:
Uchoa ET, Sabino HA, Ruginsk SG, Antunes-Rodrigues J, Elias LL. Hypophagia induced by glucocorticoid deficiency is associated with an increased activation of satiety-related responses. J Appl Physiol 106: 596-604, 2009. First published November 20, 2008; doi: 10.1152/japplphysiol.90865.2008.-Glucocorticoids have major effects on food intake, demonstrated by the decrease of food intake following adrenalectomy. Satiety signals are relayed to the nucleus of the solitary tract (NTS), which has reciprocal projections with the arcuate nucleus (ARC) and paraventricular nucleus (PVN) of the hypothalamus. We evaluated the effects of glucocorticoids on the activation of hypothalamic and NTS neurons induced by food intake in rats subjected to adrenalectomy (ADX) or sham surgery 7 days before the experiments. One-half of ADX animals received corticosterone (ADX + B) in the drinking water (B: 25 mg/l). Fos/tyrosine hydroxylase (TH), Fos/corticotrophin-releasing factor (CRF) and Fos immunoreactivity were assessed in the NTS, PVN, and ARC, respectively. Food intake and body weight were reduced in the ADX group compared with sham and ADX + B groups. Fos and Fos/TH in the NTS, Fos, and Fos/CRF immunoreactive neurons in the PVN and Fos in the ARC were increased after refeeding, with higher number in the ADX group, compared with sham and ADX + B groups. CCK administration showed no hypophagic effect on ADX group despite a similar increase of Fos/TH immunoreactive neurons in the NTS compared with sham and ADX + B groups, suggesting that CCK alone cannot further increase the anorexigenic effect induced by glucocorticoid deficiency. The present data indicate that glucocorticoid withdrawal reduced food intake, which was associated with higher activation of ARC, CRF neurons of the PVN, and catecholaminergic neurons of the NTS. In the absence of glucocorticoids, satiety signals elicited during a meal lead to an augmented activation of brain stem and hypothalamic pathways.
Resumo:
Inflammatory and infectious processes evoke neuroendocrine and behavioral changes known as acute-phase response that includes activation of the hypothalamo-pituitary-adrenal (HPA) axis and reduction of food intake. Besides its action as the most important ACTH secretagogue, corticotrophin-releasing factor (CRF), synthesized in the paraventricular nucleus (PVN), is also involved in the control of food intake. Alpha-melanocyte stimulating hormone (alpha-MSH) in the arcuate nucleus also plays a role in the energy homeostasis, possessing anorexigenic effects. To investigate the participation of neuropeptides involved in the regulation of food intake during endotoxemia, we administrated lipopolysaccharide (LPS) in sham-operated and adrenalectomized (ADX) male Wistar rats to evaluate food intake, hormone responses and Fos-CRF and Fos-alpha-MSH immunoreactivity in the PVN and arcuate nucleus, as well as CRF and POW mRNA expression in these hypothalamic nuclei. In sham-operated rats, treatment with LPS (100 mu g/kg) showed lower food intake, higher plasma ACTH and corticosterone levels, as well as an increase in Fos-CRF double labeled neurons and CRF mRNA expression in the PVN, with no changes in Fos-alpha-MSH immunoreactivity and POW mRNA expression in the arcuate nucleus, compared to saline treated rats. After LPS treatment, ADX rats showed further increase in plasma ACTH levels, marked decrease of food intake, higher Fos-CRF immunoreactive neurons in the PVN and CRF mRNA expression, as well as an increase in Fos-alpha-MSH immunoreactivity and POW mRNA expression in the arcuate nucleus, compared to sham-operated rats treated with LPS. In conclusion, the present data indicate that the marked hypophagia during endotoxemia following ADX is associated with an increased activation of CRF and POW neurons in the hypothalamus and an increased mRNA expression of these neuropeptides. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Objective: To elucidate the potential mechanisms involved in the physiopathology of endometriosis. We analyzed the differential gene expression profiles of eutopic and ectopic tissues from women with endometriosis. Design: Prospective laboratory study. Setting: University hospital. Patient(s): Seventeen patients in whom endometriosis was diagnosed and 11 healthy fertile women. Intervention(s): Endometrial biopsy specimens from the endometrium of healthy women without endometriosis and from the eutopic and ectopic endometrium tissues of patients with endometriosis were obtained in the early proliferative phase of the menstrual cycle. Main Outcome Measure(s): Six paired samples of eutopic and ectopic tissue were analyzed by subtractive hybridization. To evaluate the expression of genes found by rapid subtraction hybridization methods, we measured CTGF, SPARC, MYC, MMP and IGFBP1 genes by real-time polymerase chain reaction in all samples. Result(s): This study identified 291 deregulated genes in the endometriotic lesions. Significant expression differences were obtained for SPARC, MYC, and IGFBP1 in the peritoneal lesions and for MMP3 in the ovarian endometriomas. Additionally, significant differences were obtained for SPARC and IGFBP1 between the peritoneal and ovarian lesions. No significant differences were found for the studied genes between the control and the eutopic endometrium. Conclusion(s): This study identified 291 genes with differential expression in endometriotic lesions. The deregulation of the SPARC, MYC, MMP3, and IGFBP1 genes may be responsible for the loss of cellular homeostasis in endometriotic lesions. (Fertil Steril(R) 2010;93:1750-73. (C) 2010 by American Society for Reproductive Medicine.)
Resumo:
Endometriosis is a gynecologic disease characterized by the presence of endometrial tissue outside the uterine cavity. Although 15% of the female population in reproductive age is affected by endometriosis, its pathogenesis remains unclear. According to the most accepted pathogenesis hypothesis, endometrial fragments from the menstrual phase are transported through the uterine tubes to the peritoneal cavity, where they undergo implantation and growth, invading adjacent tissues. However, the establishment of the disease requires that endometrial cells present molecular characteristics favoring the onset and progression of ectopic implantation. In this investigation, we analyzed the differential gene expression profiles of peritoneal and ovarian endometriotic lesions compared to the endometrial tissue of nonaffected women using rapid subtraction hybridization (RaSH). In our study, this method was applied to samples of endometriotic lesions from affected women and to biopsies of endometrium of healthy women without endometriosis, where we could identify 126 deregulated genes. To evaluate the expression of genes found by RaSH method, we measured LOXL1, HTRA1, and SPARC genes by real-time polymerase chain reaction. Significant different expression was obtained for HTRA1 and LOXL1, upregulated in the ectopic endometrium, suggesting that these genes are involved in the physiopathology of endometriosis and may favor the viability of endometrial cells at ectopic sites.