174 resultados para TEMPERATURE PHOTOSENSITIZED OXIDATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the one-and two-loop contribution to the free energy in QED with Lorentz symmetry breaking introduced via constant CPT-even Lorentz-breaking parameters at the high temperature limit. We find the impact of the Lorentz-violating term for the free energy and carry out a numerical estimation for the Lorentz-breaking parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a more detailed version of our recent paper where we proposed, from first principles, a direct method for evaluating the exact fermion propagator in the presence of a general background field at finite temperature. This can, in turn, be used to determine the finite temperature effective action for the system. As applications, we discuss the complete one loop finite temperature effective actions for 0+1 dimensional QED as well as for the Schwinger model in detail. These effective actions, which are derived in the real time (closed time path) formalism, generate systematically all the Feynman amplitudes calculated in thermal perturbation theory and also show that the retarded (advanced) amplitudes vanish in these theories. Various other aspects of the problem are also discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a temperature- dependent Hartree- Fock- Bogoliubov- Popov theory to analyze the properties of the equilibrium states of an homogeneous mixture of bosonic atoms in two different hyperfine states and in the presence of an internal Josephson coupling. In our calculation we show that the bistable structure of the equilibrium states at zero temperature changes when we increase the temperature of the system. We investigate two mechanisms of the disappearance of bistability. In one, near the collapse of one of the equilibrium states, the acoustical branch becomes unstable and the gap of the optical branch goes to zero. In the other, there is no divergent behavior of the system and bistability disappears at a temperature in which the two equilibrium states merge at a zero- population fraction imbalance. When we further increase the temperature, this state remains as a unique equilibrium configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A full dimensional quasiclassical trajectory study of the OH+SO reaction is presented with the aim of investigating the role of the reactants rotational energy in the reactivity. Different energetic combinations with one and both reactants rotationally excited are studied. A passive method is used to correct zero-point-energy leakage in the classical calculations. The reactive cross sections, for each combination, are calculated and fitted to a capturelike model combined with a factor accounting for recrossing effects. Reactivity decreases as rotational energy is increased in any of both reactants. This fact provides a theoretical support for the experimental dependence of the rate constant on temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We adopt the Dirac model for quasiparticles in graphene and calculate the finite-temperature Casimir interaction between a suspended graphene layer and a parallel conducting surface. We find that at high temperature, the Casimir interaction in such system is just one-half of that for two ideal conductors separated by the same distance. In this limit, a single graphene layer behaves exactly as a Drude metal. In particular, the contribution of the TE mode is suppressed, while the contribution of the TM mode saturates at the ideal-metal value. The behavior of the Casimir interaction for intermediate temperatures and separations accessible in experiments is studied in some detail. We also find an interesting interplay between two fundamental constants of graphene physics: the fine-structure constant and the Fermi velocity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, electron paramagnetic resonance, photoluminescence (PL) emission, and quantum mechanical calculations were used to observe and understand the structural order-disorder of CaTiO(3), paying special attention to the role of oxygen vacancy. The PL phenomenon at room temperature of CaTiO(3) is directly influenced by the presence of oxygen vacancies that yield structural order-disorder. These oxygen vacancies bonded at Ti and/or Ca induce new electronic states inside the band gap. Ordered and disordered CaTiO(3) was obtained by the polymeric precursor method. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3190524]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title compound (systematic name: 11-cyclopropyl-4-methyl-5,11-dihydro-6H-dipyrido[3,2-b: 2',3'-e][1,4] diazepin-6-one butanol 0.3-solvate), C15H14N4O center dot 0.3C(4)H(9)OH, was crystallized in a new triclinic pseudopolymorphic form, a butanol solvate, and the crystal structure determined at 150 K. The molecular conformation of this new form differs from that reported previously, although the main intermolecular hydrogen-bond pattern remains the same. N-H center dot center dot center dot O hydrogen bonds [N center dot center dot center dot O = 2.957 (3) angstrom] form centrosymmetric dimers and the crystal packing of this new pseudopolymorph generates infinite channels along the b axis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, thermal and optical properties of the commercial Q-98 neodymium-doped phosphate glass have been measured at low temperature, from 50 to 300 K. The time-resolved thermal lens spectrometry together with the optical interferometry and the thermal relaxation calorimetry methods were used to investigate the glass athermal characteristics described by the temperature coefficient of the optical path length change, ds/dT. The thermal diffusivity was also determined, and the temperature coefficients of electronic polarizability, linear thermal expansion, and refractive index were calculated and used to explain ds/dT behavior. ds/dT measured via thermal lens method was found to be zero at 225 K. The results provided a complete characterization of the thermo-optical properties of the Q-98 glass, which may be useful for those using this material for diode-pumped solid-state lasers. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3234396]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several microorganisms were isolated from soil/sediment samples of Antarctic Peninsula. The enrichment technique using (RS)-.1-(phenyl) ethanol as a carbon source allowed us to isolate 232 psychrophile/psychrotroph microorganisms. We also evaluated the enzyme activity (oxidoreductases) for enantioselective oxidation reactions, by using derivatives of (RS)-.1-(phenyl) ethanol as substrates. Among the studied microorganisms, 15 psychrophile/psychrotroph strains contain oxidoreductases that catalyze the (S)-.enantiomer oxidation from racemic alcohols to their corresponding ketones. Among the identified microorganisms, Flavobacterium sp. and Arthrobacter sp. showed excellent enzymatic activity. These new bacteria strains were selected for optimization study, in which the (RS)-.1-(4-.methyl-.phenyl) ethanol oxidation was evaluated in several reaction conditions. From these studies, it was observed that Flavobacterium sp. has an excellent enzymatic activity at 10 degrees C and Arthrobacter sp. at 15 and 25 degrees C. We have also determined the growth curves of these bacteria, and both strains showed optimum growth at 25 degrees C, indicating that these bacteria are psychrotroph.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomolecule oxidation promoted by Cu, Zn-superoxide dismutase (SOD1) has been studied because of its potential role in neurodegenerative diseases. We studied the mechanism of DNA damage promoted by the SOD1-H(2)O(2) system. The system promoted the formation of strand breaks in plasmid DNA and the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) in calf thymus DNA. We were also able to detect, for the. first time, 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-epsilon dGuo) in calf thymus DNA exposed to SOD1-H(2)O(2). The addition of a copper chelator caused a decrease in the frequency of 8-oxodGuo and 1,N(2)-epsilon dGuo, indicating the participation of copper ions lost from SOD1 active sites. The addition of bicarbonate increased the levels of both DNA lesions. We conclude that copper liberated from SOD1 active sites has a central role in the mechanism of DNA damage promoted by SOD1 in the presence of H(2)O(2), and that bicarbonate can modulate the reactivity of released copper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present a complete characterization and magnetic study of vanadium oxide/hexadecylamine nanotubes (VO(x)/Hexa NT's) doped with Co(2)+ and Ni(2+) ions. The morphology of the NT's has been characterized by transmission electron microscopy, while the metallic elements have been quantified by the instrumental neutron activation analysis technique. The static and dynamic magnetic properties were studied by collecting data of magnetization as a function of magnetic field and temperature and by electron paramagnetic resonance. At difference of the majority reports in the literature, we do not observe magnetic dimers in vanadium oxide nanotubes. Also, we observed that the incorporation of metallic ions (Co(2+), S = 3/2 and Ni(2+), S = 1) decreases notably the amount of V(4+) ions in the system, from 14-16% (nondoped case) to 2%-4%, with respect to the total vanadium atoms (fact corroborated by XPS experiments) anyway preserving the tubular nanostructure. The method to decrease the amount of V(4+) in the nanotubes improves considerably their potential technological applications as Li-ion batteries cathodes. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3580252]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct borohydride fuel cells are promising high energy density portable generators. However, their development remains limited by the complexity of the anodic reaction: The borohydride oxidation reaction (BOR) kinetics is slow and occurs at high overvoltages, while it may compete with the heterogeneous hydrolysis of BH(4)(-). Nevertheless, one usually admits that gold is rather inactive toward the heterogeneous hydrolysis of BH(4)(-) and presents some activity regarding the BOR, therefore yielding to the complete eight-electron BOR. In the present paper, by coupling online mass spectrometry to electrochemistry, we in situ monitored the H(2) yield during BOR experiments on sputtered gold electrodes. Our results show non-negligible H(2) generation on Au on the whole BOR potential range (0-0.8 V vs reversible hydrogen electrode), thus revealing that gold cannot be considered as a faradaic-efficient BOR electrocatalyst. We further propose a relevant reaction pathway for the BOR on gold that accounts for these findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early reports stated that Au was a catalyst of choice for the BOR because it would yield a near complete faradaic efficiency. However, it has recently been suggested that gold could yield to some extent the heterogeneous hydrolysis of BH(4)(-),therefore lowering the electron count per BH(4)(-), especially at low potential. Actually, the blur will exist regarding the BOR mechanism on Au as long as no physical proof regarding the reaction intermediates is not put forward. In that frame, in situ physical techniques like FTIR exhibit some interest to study the BOR. Consequently, in situ infrared reflectance spectroscopy measurements (SPAIRS technique) have been performed in 1 M NaOH/1 M NaBH(4) on a gold electrode with the aim to detect the intermediate species. We monitored several bands in B-H ((nu) over bar similar to 1180,1080 and 972 cm(-1)) and B-O bond regions ((nu) over bar =1325 and similar to 1425cm(-1)), which appear sequentially as a function of the electrode polarization. These absorption bands are assigned to BH(3), BH(2) and BO(2)(-) species. At the light of the experimental results, possible initial elementary steps of the BOR on gold electrode have been proposed and discussed according to the relevant literature data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethanol oxidation has been studied on stepped platinum single crystal electrodes in acid media using electrochemical and Fourier transform infrared (FTIR) techniques. The electrodes used belong to two different series of stepped surfaces: those having (111) terraces with (100) monoatomic steps and those with (111) terraces with (110) monoatomic steps. The behaviors of the two series of stepped surfaces for the oxidation of ethanol are very different. On the one hand, the presence of (100) steps on the (111) terraces provides no significant enhancement of the activity of the surfaces. On the other hand, (110) steps have a double effect on the ethanol oxidation reaction. At potentials below 0.7 V, the step catalyzes the C-C bond cleavage and also the oxidation of the adsorbed CO species formed. At higher potentials, the step is not only able to break the C-C bond, but also to catalyze the oxidation of ethanol to acetic acid and acetaldehyde. The highest catalytic activity from voltammetry for ethanol oxidation was obtained with the Pt(554) electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a study of the catalytic oxidation of ethanol on polycrystalline gold electrode in alkaline media. The investigation was carried out by means of chronoamperometry, cyclic voltammetry, and in situ FTIR spectroscopy. The main goal was to investigate the early stages of ethanol electrooxidation, namely at fairly low potentials (E = 600 mV vs. RHE) and for moderate reaction times (t < 300 s). Chronoamperometric experiments show a current increase accompanying the increasing in the ethanol concentration up to about 2 M and then a slight decrease at 3 M. Adsorbed CO has been observed as early as about 200 mV vs. RHE and indicates that the cleavage of the C-C bond might occur, probably to a small extent, at very low overpotentials during ethanol adsorption on gold surface. The amount of dissolved acetate ions produced during the chronoamperomentry was followed by the asymmetric stretching band at 1558 cm(-1) as a function of time, and found to increase linearly with time up to 300 s. This allowed estimating the reaction order of acetate formation with respect to ethanol concentration.