73 resultados para Subfractals, Subfractal Coding, Model Analysis, Digital Imaging, Pattern Recognition
Resumo:
Pilostyles species (Apodanthaceae) are endoparasites in stems of the plant family Fabaceae. The body comprises masses of parenchyma in the host bark and cortex, with sinkers, comprising groups of twisted tracheal elements surrounded by parenchyma that enter the secondary xylem of the host plant. Here we report for the first time the effects of Pilostyles parasitism on host secondary xylem. We obtained healthy and parasitized stems from Mimosa foliolosa, M. maguirei and M. setosa and compared vessel element length, fiber length, vessel diameter and vessel frequency, measured through digital imaging. Also, tree height and girth were compared between healthy and parasitized M. setosa. When parasitized, plant size, vessel diameter, vessel element length and fiber length are all less than in healthy plants. Also, vessel frequency is greater and vessels are narrower in parasitized stems. These responses to parasitism are similar to those observed in stressed plants. Thus, hosts respond to the parasite by changing its wood micromorphology in favour of increased hydraulic safety.
Resumo:
The most significant radiation field nonuniformity is the well-known Heel effect. This nonuniform beam effect has a negative influence on the results of computer-aided diagnosis of mammograms, which is frequently used for early cancer detection. This paper presents a method to correct all pixels in the mammography image according to the excess or lack on radiation to which these have been submitted as a result of the this effect. The current simulation method calculates the intensities at all points of the image plane. In the simulated image, the percentage of radiation received by all the points takes the center of the field as reference. In the digitized mammography, the percentages of the optical density of all the pixels of the analyzed image are also calculated. The Heel effect causes a Gaussian distribution around the anode-cathode axis and a logarithmic distribution parallel to this axis. Those characteristic distributions are used to determine the center of the radiation field as well as the cathode-anode axis, allowing for the automatic determination of the correlation between these two sets of data. The measurements obtained with our proposed method differs on average by 2.49 mm in the direction perpendicular to the anode-cathode axis and 2.02 mm parallel to the anode-cathode axis of commercial equipment. The method eliminates around 94% of the Heel effect in the radiological image and the objects will reflect their x-ray absorption. To evaluate this method, experimental data was taken from known objects, but could also be done with clinical and digital images.
Resumo:
In this work we present a double folding optical model analysis of new near-barrier quasi-elastic experimental data for the (6,7)Li + (120)Sn systems. From the analysis, it was possible to confirm the ground-state nucleon densities assumed for the weakly bound (6,7)Li isotopes. The apparent discrepancies between the experimental densities and those based on Dirac-Hartree-Fock Bogoliubov (DHB) calculations were removed. A new approach that simulates the projectile break-up and a positive polarization from couplings of (6,7)Li bound states with the continuum was considered in the reaction mechanism. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The reactions induced by the weakly bound (6)Li projectile interacting with the intermediate mass target (59)Co were investigated. Light charged particles singles and alpha-d coincidence measurements were performed at the near barrier energies E(lab) = 17.4, 21.5, 25.5 and 29.6 MeV. The main contributions of the different competing mechanisms are discussed. A statistical model analysis. Continuum-Discretized Coupled-Channels (CDCC) calculations and two-body kinematics were used as tools to provide information to disentangle the main components of these mechanisms. A significant contribution of the direct breakup was observed through the difference between the experimental sequential breakup cross section and the CDCC prediction for the non-capture breakup cross section. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Shape provides one of the most relevant information about an object. This makes shape one of the most important visual attributes used to characterize objects. This paper introduces a novel approach for shape characterization, which combines modeling shape into a complex network and the analysis of its complexity in a dynamic evolution context. Descriptors computed through this approach show to be efficient in shape characterization, incorporating many characteristics, such as scale and rotation invariant. Experiments using two different shape databases (an artificial shapes database and a leaf shape database) are presented in order to evaluate the method. and its results are compared to traditional shape analysis methods found in literature. (C) 2009 Published by Elsevier B.V.
Resumo:
Texture is an important visual attribute used to describe the pixel organization in an image. As well as it being easily identified by humans, its analysis process demands a high level of sophistication and computer complexity. This paper presents a novel approach for texture analysis, based on analyzing the complexity of the surface generated from a texture, in order to describe and characterize it. The proposed method produces a texture signature which is able to efficiently characterize different texture classes. The paper also illustrates a novel method performance on an experiment using texture images of leaves. Leaf identification is a difficult and complex task due to the nature of plants, which presents a huge pattern variation. The high classification rate yielded shows the potential of the method, improving on traditional texture techniques, such as Gabor filters and Fourier analysis.
Resumo:
2D electrophoresis is a well-known method for protein separation which is extremely useful in the field of proteomics. Each spot in the image represents a protein accumulation and the goal is to perform a differential analysis between pairs of images to study changes in protein content. It is thus necessary to register two images by finding spot correspondences. Although it may seem a simple task, generally, the manual processing of this kind of images is very cumbersome, especially when strong variations between corresponding sets of spots are expected (e.g. strong non-linear deformations and outliers). In order to solve this problem, this paper proposes a new quadratic assignment formulation together with a correspondence estimation algorithm based on graph matching which takes into account the structural information between the detected spots. Each image is represented by a graph and the task is to find a maximum common subgraph. Successful experimental results using real data are presented, including an extensive comparative performance evaluation with ground-truth data. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The design of translation invariant and locally defined binary image operators over large windows is made difficult by decreased statistical precision and increased training time. We present a complete framework for the application of stacked design, a recently proposed technique to create two-stage operators that circumvents that difficulty. We propose a novel algorithm, based on Information Theory, to find groups of pixels that should be used together to predict the Output Value. We employ this algorithm to automate the process of creating a set of first-level operators that are later combined in a global operator. We also propose a principled way to guide this combination, by using feature selection and model comparison. Experimental results Show that the proposed framework leads to better results than single stage design. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The design of binary morphological operators that are translation-invariant and locally defined by a finite neighborhood window corresponds to the problem of designing Boolean functions. As in any supervised classification problem, morphological operators designed from a training sample also suffer from overfitting. Large neighborhood tends to lead to performance degradation of the designed operator. This work proposes a multilevel design approach to deal with the issue of designing large neighborhood-based operators. The main idea is inspired by stacked generalization (a multilevel classifier design approach) and consists of, at each training level, combining the outcomes of the previous level operators. The final operator is a multilevel operator that ultimately depends on a larger neighborhood than of the individual operators that have been combined. Experimental results show that two-level operators obtained by combining operators designed on subwindows of a large window consistently outperform the single-level operators designed on the full window. They also show that iterating two-level operators is an effective multilevel approach to obtain better results.
Resumo:
This work describes a novel methodology for automatic contour extraction from 2D images of 3D neurons (e.g. camera lucida images and other types of 2D microscopy). Most contour-based shape analysis methods cannot be used to characterize such cells because of overlaps between neuronal processes. The proposed framework is specifically aimed at the problem of contour following even in presence of multiple overlaps. First, the input image is preprocessed in order to obtain an 8-connected skeleton with one-pixel-wide branches, as well as a set of critical regions (i.e., bifurcations and crossings). Next, for each subtree, the tracking stage iteratively labels all valid pixel of branches, tip to a critical region, where it determines the suitable direction to proceed. Finally, the labeled skeleton segments are followed in order to yield the parametric contour of the neuronal shape under analysis. The reported system was successfully tested with respect to several images and the results from a set of three neuron images are presented here, each pertaining to a different class, i.e. alpha, delta and epsilon ganglion cells, containing a total of 34 crossings. The algorithms successfully got across all these overlaps. The method has also been found to exhibit robustness even for images with close parallel segments. The proposed method is robust and may be implemented in an efficient manner. The introduction of this approach should pave the way for more systematic application of contour-based shape analysis methods in neuronal morphology. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper describes a new module of the expert system SISTEMAT used for the prediction of the skeletons of neolignans by (13)C NMR, (1)H NMR and botanical data obtained from the literature. SISTEMAT is composed of MACRONO, SISCONST, C13MACH, H1MACH and SISOCBOT programs, each analyzing data of the neolignan in question to predict the carbon skeleton of the compound. From these results, the global probability is computed and the most probable skeleton predicted. SISTEMAT predicted the skeletons of 75% of the 20 neolignans tested, in a rapid and simple procedure demonstrating its advantage for the structural elucidation of new compounds.
Resumo:
A low-cost method is proposed to classify wine and whisky samples using a disposable voltammetric electronic tongue that was fabricated using gold and copper substrates and a pattern recognition technique (Principal Component Analysis). The proposed device was successfully used to discriminate between expensive and cheap whisky samples and to detect adulteration processes using only a copper electrode. For wines, the electronic tongue was composed of copper and gold working electrodes and was able to classify three different brands of wine and to make distinctions regarding the wine type, i.e., dry red, soft red, dry white and soft white brands. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
Resumo:
Arylpiperazine compounds are promising 5-HT1A receptor ligands that can contribute for accelerating the onset of therapeutic effect of selective serotonin reuptake inhibitors. In the present work, the chemometric methods HCA, PCA, KNN, SIMCA and PLS were employed in order to obtain SAR and QSAR models relating the structures of arylpiperazine compounds to their 5-HT1A receptor affinities. A training set of 52 compounds was used to construct the models and the best ones were obtained with nine topological descriptors. The classification and regression models were externally validated by means of predictions for a test set of 14 compounds and have presented good quality, as verified by the correctness of classifications, in the case of pattern recognition studies, and b, the high correlation coefficients (q(2) = 0.76, r(2) = 0.83) and small prediction errors for the PLS regression. Since the results are in good agreement with previous SAR studies, we can suggest that these findings can help in the search for 5-HT1A receptor ligands that are able to improve antidepressant treatment. (c) 2007 Elsevier Masson SAS. All rights reserved.