122 resultados para Solid particle erosion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The roots of swarm intelligence are deeply embedded in the biological study of self-organized behaviors in social insects. Particle swarm optimization (PSO) is one of the modern metaheuristics of swarm intelligence, which can be effectively used to solve nonlinear and non-continuous optimization problems. The basic principle of PSO algorithm is formed on the assumption that potential solutions (particles) will be flown through hyperspace with acceleration towards more optimum solutions. Each particle adjusts its flying according to the flying experiences of both itself and its companions using equations of position and velocity. During the process, the coordinates in hyperspace associated with its previous best fitness solution and the overall best value attained so far by other particles within the group are kept track and recorded in the memory. In recent years, PSO approaches have been successfully implemented to different problem domains with multiple objectives. In this paper, a multiobjective PSO approach, based on concepts of Pareto optimality, dominance, archiving external with elite particles and truncated Cauchy distribution, is proposed and applied in the design with the constraints presence of a brushless DC (Direct Current) wheel motor. Promising results in terms of convergence and spacing performance metrics indicate that the proposed multiobjective PSO scheme is capable of producing good solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of particle abrasive sizes on wear resistance of mottled cast iron with different retained austenite contents were studied. Abrasive wear tests using a pin test on alumina paper were carried out, using abrasive sizes between 16 mu m and 192 mu m. Retained austenite content of the matrix was determined by X-ray diffraction. The wear surface of samples and the alumina paper were examined by scanning electron microscopy for identifying the wear micromechanism. The results show that at lower abrasive sizes the mass loss was similar for the iron with different austenite contents. However, at higher abrasive sizes the samples with higher retained austenite content presented higher abrasion resistance. For lower abrasive sizes tested, samples with higher and lower retained austenite content both presented microcutting. On the other hand, the main wear micromechanism for the samples with higher retained austenite content and higher abrasive sizes was microploughing. The samples with lower retained austenite content presented microcutting and wedge formation at higher abrasive sizes. Higher abrasive size induced more microcutting in samples with lower retained austenite. The iron with lower retained austenite content presented wider grooves for the different abrasive sizes measured. SEM on the abrasive paper used on samples with higher retained austenite showed continuous and discontinuous microchips and the samples with lower retained austenite showed discontinuous microchips at 66 and 141 mu m. This research demonstrates the relation between abrasive size, wear resistance, groove width and wear micromechanism for mottled cast iron with different retained austenite contents. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many factors affect the airflow patterns, thermal comfort, contaminant removal efficiency and indoor air quality at individual workstations in office buildings. In this study, four ventilation systems were used in a test chamber designed to represent an area of a typical office building floor and reproduce the real characteristics of a modern office space. Measurements of particle concentration and thermal parameters (temperature and velocity) were carried out for each of the following types of ventilation systems: (a) conventional air distribution system with ceiling supply and return; (b) conventional air distribution system with ceiling supply and return near the floor; (c) underfloor air distribution system; and (d) split system. The measurements aimed to analyse the particle removal efficiency in the breathing zone and the impact of particle concentration on an individual at the workstation. The efficiency of the ventilation system was analysed by measuring particle size and concentration, ventilation effectiveness and the indoor/outdoor ratio. Each ventilation system showed different airflow patterns and the efficiency of each ventilation system in the removal of the particles in the breathing zone showed no correlation with particle size and the various methods of analyses used. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ni-doped SnO(2) nanoparticles, promising for gas-sensing applications, have been synthesized by a polymer precursor method. X-ray diffraction (XRD) and transmission electron microscopy (TEM) data analyses indicate the exclusive formation of nanosized particles with rutile-type phase (tetragonal SnO(2)) for Ni contents below 10 mol%. The mean crystallite size shows a progressive reduction with the Ni content. Room-temperature Raman spectra of Ni-doped SnO(2) nanoparticles show the presence of Raman active modes and modes activated by size effects. From the evolution of the A(1g) mode with the Ni content, a solubility limit at similar to 2 mol% was estimated. Below that content, Raman results are consistent with the occurrence of solid solution (ss) and surface segregation (seg.) of Ni ions. Above similar to 2 mol% Ni, the redshift of A(1g) mode suggests that the surface segregation of Ni ions takes place. Disorder-activated bands were determined and their integrated intensity evolution with the Ni content suggest that the solid-solution regime favors the increase of disorder; meanwhile, that disorder becomes weaker as the Ni content is increased. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ni-doped SnO(2) nanoparticles prepared by a polymer precursor method have been characterized structurally and magnetically. Ni doping (up to 10 mol%) does not significantly affect the crystalline structure of SnO(2), but stabilizes smaller particles as the Ni content is increased. A notable solid solution regime up to similar to 3 mol% of Ni, and a Ni surface enrichment for the higher Ni contents are found. The room temperature ferromagnetism with saturation magnetization (MS) similar to 1.2 x 10(-3) emu g(-1) and coercive field (H(C)) similar to 40 Oe is determined for the undoped sample, which is associated with the exchange coupling of the spins of electrons trapped in oxygen vacancies, mainly located on the surface of the particles. This ferromagnetism is enhanced as the Ni content increases up to similar to 3 mol%, where the Ni ions are distributed in a solid solution. Above this Ni content, the ferromagnetism rapidly decays and a paramagnetic behavior is observed. This finding is assigned to the increasing segregation of Ni ions (likely formed by interstitials Ni ions and nearby substitutional sites) on the particle surface, which modifies the magnetic behavior by reducing the available oxygen vacancies and/or the free electrons and favoring paramagnetic behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polymer precursor method has been used to synthesize Ni-doped SnO(2) nanoparticles. X-ray diffraction (XRD) data analyses indicate the exclusive formation of nanosized particles with rutile-type phase (tetragonal SnO(2)) for Ni contents below 10 mol%. In this concentration range, the particle sizes decrease with increasing Ni content and a bulk solid solution limit was determined at similar to 1 mol%. Ni surface enrichment is present at concentrations higher than the solution limit. Only above 10 mol% Ni. the formation of a second NiO-related phase has been determined. Magnetization measurements suggest the occurrence of ferromagnetism for samples in the solid solution regime (below similar to 1 mol%). This ferromagnetism is associated with the exchange interaction between electron spins trapped on oxygen vacancies, and is enhanced as the amount of Ni(2+) substituting at Sn(4+) sites increases. Above the solid solution limit, ferromagnetism is destroyed by the Ni surface enrichment and the system behaves as a paramagnet. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A duplex surface treatment consisting of High Temperature Gas Nitriding (HTGN) followed by Low Temperature Plasma Nitriding (LTPN) was carried out in an UNS S31803 duplex stainless steel. The HTGN treatment was intended to produce a relatively thick and hard fully austenitic layer giving mechanical support to the thinner and much harder expanded austenite layer. HTGN was performed at 1200 degrees C for 3 h, in a 0.1 MPa N(2) atmosphere while LTPN, was carried out in a 75% N(2) + 25% H(2) atmosphere, at 400 degrees C for 12 h, under a 250 Pa pressure, and 450 V. An expanded austenite gamma(N) layer, 2.3 mu m thick, 1500 HVO.025 hard, was formed on top of a 100 mu m thick, 330 HV 0.1 hard, fully austenitic layer, containing 0.9 wt% N. For comparison purposes LTPN was carried out with UNS S30403 stainless steel specimens obtaining a 4.0 mu m thick, 1500 HV 0.025 hard, expanded austenite layer formed on top of a fully austenitic matrix having 190 HV 0.1. The nitrided specimens were tested in a 20 kHz vibratory cavitation-erosion testing equipment. Comparison between the duplex treated UNS S31803 steel and the low temperature plasma nitrided UNS S30403 steel, resulted in incubation times almost 9 times greater. The maximum cavitation wear rate of the LTPN UNS S30403 was 5.5 g/m(2)h, 180 times greater than the one measured for the duplex treated UNS S31803 steel. The greater cavitation wear resistance of the duplex treated UNS S31803 steel, compared to the LTPN treated UNS S30403 steel was explained by the greater mechanical support the fully austenitic, 330 HV 0.1 hard, 100 mu m layer gives to the expanded austenite layer formed on top of the specimen after LTPN. A strong crystallographic textured surface, inherited from the fully austenitic layer formed during HTGN, with the expanded austenite layer showing {101} crystallographic planes//surface contributed also to improve the cavitation resistance of the duplex treated steel. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The calcium carbonate industry generates solid waste products which, because of their high alkaline content (CaO, CaCO(3) and Ca (OH)(2)), have a substantial impact on the environment. The objectives of this study are to characterize and classify the solid waste products, which are generated during the hydration process of the calcium carbonate industry, according to ABNT`s NBR 10.000 series, and to determine the potential and efficiency of using these solid residues to correct soil acidity. Initially, the studied residue was submitted to gross mass, leaching, solubility, pH. X-ray Diffractometry, Inductive Coupled Plasma - Atomic Emission Spectrometry (ICP-AES), granularity and humidity analyses. The potential and efficiency of the residue for correcting soil acidity was determined by analysis of the quality attributes for soil correctives (PN, PRNT, Ca and Mg contents, granularity). Consequently, the results show that the studied residue may be used as a soil acidity corrective, considering that a typical corrective compound is recommended for each different type of soil. Additionally, the product must be further treated (dried and ground) to suit the specific requirements of the consumer market.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Specimens of a UNS S31803 steel were submitted to high temperature gas nitriding and then to vibratory pitting wear tests. Nitrided samples displayed fully austenitic microstructures and 0.9 wt. % nitrogen contents. Prior to pitting tests, sample texture was characterized by electron backscattering diffraction, EBSD. Later on, the samples were tested in a vibratory pit testing equipment using distilled water Pitting tests were periodically interrupted to evaluate mass loss and to characterize the surface wear by SEM observations. At earlier pit erosion, stages intense and highly heterogeneous plastic deformation inside individual grains was observed. Later on, after the incubation period, mass loss by debris detachment was observed. Initial debris micro fracturing was addressed to low cycle fatigue. Damage started at both sites, inside the grains and grain boundaries. The twin boundaries were the most prone to mass-loss incubation. Grains with (101) planes oriented near parallel to the sample surface displayed higher wear resistance than grains with other textures. This was attributed to lower resolved stresses for plastic deformation inside the grains with (101)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the behavior of an AISI 410 martensitic stainless steel under corrosion-erosion conditions is evaluated. Quenched and tempered samples were used for the wear test, using a low velocity jet-like device connected to a potentiostat. Potentiodynamic polarization curves were obtained with the electrolyte in static state, with flow conditions and under corrosion-erosion, adding quartz particles to the electrolyte. In addition, mass loss measurements under erosion and corrosion-erosion conditions were carried out. The topography of the surfaces was examined after the wear tests, using optical and scanning electron microscopy. This information, together with the results of mass losses and the electrochemical tests were used to establish the degradation mechanisms of the stainless steels under different testing conditions. The results showed that synergism is a significant part of the degradation process of this steel (66.5%) and that the mass removal process of steel was controlled by corrosion assisted by erosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high nitrogen austenitic stainless steel (0.9wt% N) and an ordinary 304 austenitic stainless steel were submitted to cavitation-erosion tests in a vibratory apparatus operating at a frequency of 20 kHz. The high nitrogen stainless steel was obtained by high temperature gas nitriding a 1-mm thick strip of an UNS 31803 duplex stainless steel. The 304 austenitic stainless steel was used for comparison purposes. The specimens were characterized by scanning electron microscopy and Electron Back Scatter Diffraction. The surface of the cavitation damaged specimens was analyzed trying to find out the regions where cavitation damage occurred preferentially. The distribution of sites where cavitation inception occurred was extremely heterogeneous, concentrating basically at (i) slip lines inside some grains and (ii) Sigma-3 coincidence site lattice (CSL) boundaries (twin boundaries). Furthermore, it was observed that the CE damage spread faster inside those grains which were more susceptible to damage incubation. The damage heterogeneity was addressed to plasticity anisotropy. Grains in which the crystallographic orientation leads to high resolved shear stress show intense damage at slip lines. Grain boundaries between grains with large differences in resolved shear stress where also intensely damaged. The relationship between crystallite orientation distributions, plasticity anisotropy and CE damage mechanisms are discussed. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, the sensitivity of NIR spectroscopy toward the evolution of particle size was studied during emulsion homopolymerization of styrene (Sty) and emulsion copolymerization of vinyl acetate-butyl acrylate conducted in a semibatch stirred tank and a tubular pulsed sieve plate reactor, respectively. All NIR spectra were collected online with a transflectance probe immersed into the reaction medium. The spectral range used for the NIR monitoring was from 9 500 to 13 000 cm(-1), where the absorbance of the chemical components present is minimal and the changes in the NIR spectrum can be ascribed to the effects of light scattering by the polymer particles. Off-line measurements of the average diameter of the polymer particles by DLS were used as reference values for the development of the multi-variate NIR calibration models based on partial least squares. Results indicated that, in the spectral range studied, it is possible to monitor the evolution of the average size of the polymer particles during emulsion polymerization reactions. The inclusion of an additional spectral range, from 5 701 to 6 447 cm(-1), containing information on absorbances (""chemical information"") in the calibration models was also evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cr3C2-NiCr and WC-Ni coatings are widely used for wear applications at high and room temperature, respectively. Due to the high corrosion resistance of NiCr binder, Cr3C2-NiCr coatings are also used in corrosive environments. The application of WC-Ni coatings in corrosive media is 14 not recommended due to the poor corrosion resistance of the (pure Ni) metallic matrix. It is well known that the addition of Cr to the metallic binder improves the corrosion properties. Erosion-corrosion performance of thermal spray coatings is widely influenced by ceramic phase composition, the size of ceramic particles and also the composition of the metallic binder. In the present work, two types of HVOF thermal spray coatings (Cr3C2-NiCr and WC-Ni) obtained with different spray conditions were studied and compared with conventional micro-cracked hard chromium coatings. Both as-sprayed and polished samples were tested under two erosion-corrosion conditions with different erosivity. Tungsten carbide coatings showed better performance under the most erosive condition, while chromium carbide coatings were superior under less erosive conditions. Some of the tungsten carbide coatings and hard chromium showed similar erosion-corrosion behaviour under more and less erosive conditions. The erosion-corrosion and electrochemical results showed that surface polishing improved the erosion-corrosion properties of the thermally sprayed coatings. The corrosion behaviour of the different coatings has been compared using Electrochemical Impedance Spectroscopy (EIS) and polarization curves. Total material loss due to erosion-corrosion was determined by weight loss measurements. An estimation of the corrosion contribution to the total weight loss was also given. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particle-image velocimetry (PIV) was used to visualize the flow within an optically transparent pediatric ventricular assist device (PVAD) under development in our laboratory The device studied is a diaphragm type pulsatile pump with an ejection volume of 30 ml per beating cycle intended for temporary cardiac assistance as a bridge to transplantation or recovery in children. Of particular interest was the identification of flow patterns, including regions of stagnation and/or strong turbulence that often promote thrombus formation and hemolysis, which can degrade the usefulness of such devices. For this purpose, phase-locked PIV measurements were performed in planes parallel to the diaphram that drives the flow in the device. The test fluid was seeded with 10 Am polystyrene spheres, and the motion of these particles was used to determine the instantaneous flow velocity distribution in the illumination plane. These measurements revealed that flow velocities up to 1.0 m/s can occur within the PVAD. Phase-averaged velocity fields revealed the fixed vortices that drive the bulk flow within the device, though significant cycle-to-cycle variability was also quite apparent in the instantaneous velocity distributions, most notably during the filling phase. This cycle-to-cycle variability can generate strong turbulence that may contribute to greater hemolysis. Stagnation regions have also been observed between the input and output branches of the prototype, which can increase the likelihood of thrombus formation. [DOI: 10.1115/1.4001252]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isotretinoin is the drug of choice for the management of severe recalcitrant nodular acne. Nevertheless, some of its physical-chemical properties are still poorly known. Hence, the aim of our study consisted to comparatively evaluate the particle size distribution (PSD) and characterize the thermal behavior of the three encapsulated isotretinoin products in oil suspension (one reference and two generics) commercialized in Brazil. Here, we show that the PSD, estimated by laser diffraction and by polarized light microscopy, differed between the generics and the reference product. However, the thermal behavior of the three products, determined by thermogravimetry (TGA), differential thermal (DTA) analyses and differential scanning calorimetry (DSC), displayed no significant changes and were more thermostable than the isotretinoin standard used as internal control. Thus, our study suggests that PSD analyses in isotretinoin lipid-based formulations should be routinely performed in order to improve their quality and bioavailability. (C) 2010 Elsevier B.V. All rights reserved.