156 resultados para Sinusoidal surface microstructure
Resumo:
Results of the surface modification of Ti-16Si-4B powder alloy by nitrogen ion implantation are presented, together with the experimental description of the preparation of that powder by high-energy ball milling and hot pressing. The phase structure, chemical composition and morphology of sample surfaces were observed by utilizing X-ray diffractometer (XRD), atomic force microscope (AFM) and scanning electron microscopy (SEM). A tribological characterization was carried out with a ball-on-disc tribometer and an SEM. Friction coefficient is compared with the one obtained for Ti-6Al-4V alloy and the wear scars characterized by SEM/EDS (energy dispersive spectroscopy). The concentration profile of the detected elements have been investigated using Auger electron spectroscopy (AES) depth profiling. Our results show that a shallow implanted layer of oxygen and nitrogen ions were obtained at the Ti-16Si -4B alloy surface, sufficient to modify slightly its tribological properties. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
Resumo:
Ticks are blood-feeding arthropods that secrete immunomodulatory molecules through their saliva to antagonize host inflammatory and immune responses. As dendritic cells (DCs) play a major role in host immune responses, we studied the effects of Rhipicephalus sanguineus tick saliva on DC migration and function. Bone marrow-derived immature DCs pre-exposed to tick saliva showed reduced migration towards macrophage inflammatory protein (MIP)-1 alpha, MIP-1 beta and regulated upon activation, normal T cell expressed and secreted (RANTES) chemokines in a Boyden microchamber assay. This inhibition was mediated by saliva which significantly reduced the percentage and the average cell-surface expression of CC chemokine receptor CCR5. In contrast, saliva did not alter migration of DCs towards MIP-3 beta, not even if the cells were induced for maturation. Next, we evaluated the effect of tick saliva on the activity of chemokines related to DC migration and showed that tick saliva per se inhibits the chemotactic function of MIP-1 alpha, while it did not affect RANTES, MIP-1 beta and MIP-3 beta. These data suggest that saliva possibly reduces immature DC migration, while mature DC chemotaxis remains unaffected. In support of this, we have analyzed the percentage of DCs on mice 48 h after intradermal inoculation with saliva and found that the DC turnover in the skin was reduced compared with controls. Finally, to test the biological activity of the saliva-exposed DCs, we transferred DCs pre-cultured with saliva and loaded with the keyhole limpet haemocyanin (KLH) antigen to mice and measured their capacity to induce specific T cell cytokines. Data showed that saliva reduced the synthesis of both T helper (Th)1 and Th2 cytokines, suggesting the induction of a non-polarised T cell response. These findings propose that the inhibition of DCs migratory ability and function may be a relevant mechanism used by ticks to subvert the immune response of the host. (c) 2007 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Surface heat treatment in glasses and ceramics, using CO(2) lasers, has attracted the attention of several researchers around the world due to its impact in technological applications, such as lab-on-a-chip devices, diffraction gratings and microlenses. Microlens fabrication on a glass surface has been studied mainly due to its importance in optical devices (fiber coupling, CCD signal enhancement, etc). The goal of this work is to present a systematic study of the conditions for microlens fabrications, along with the viability of using microlens arrays, recorded on the glass surface, as bidimensional codes for product identification. This would allow the production of codes without any residues (like the fine powder generated by laser ablation) and resistance to an aggressive environment, such as sterilization processes. The microlens arrays were fabricated using a continuous wave CO(2) laser, focused on the surface of flat commercial soda-lime silicate glass substrates. The fabrication conditions were studied based on laser power, heating time and microlens profiles. A He-Ne laser was used as a light source in a qualitative experiment to test the viability of using the microlenses as bidimensional codes.
Resumo:
The objective of the present work is to evaluate the effect of surface modification of cellulose pulp fibres on the mechanical and microstructure of fibre-cement composites. Surface modification of the cellulose pulps was performed with Methacryloxypropyltri-methoxysilane (MPTS) and Aminopropyltri-ethoxysilane (APTS) in an attempt to improve their durability into fibre-cement composites. The surface modification showed significant influence on the microstructure of the composites on the fibre-matrix interface and in the mineralization of the fibre lumen as seen by scanning electron microscopy (SEM) with back-scattered electron (BSE) detector. Accelerated ageing cycles decreased modulus of rupture (MOR) and toughness (TE) of the composites. Composites reinforced with MPTS-modified fibres presented fibres free from cement hydration products, while APTS-modified fibres presented accelerated mineralization. Higher mineralization of the fibres led to higher embrittlement of the composite after accelerated ageing cycles. These observations are therefore very useful for understanding the mechanisms of degradation of fibre-cement composites. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[06/52521-0]
Resumo:
A typical residual clayey soil originating from basalt in southern Brazil has been analyzed in order to assess the influence of wetting-induced deformation and microstructural features on the collapse behavior. Single and double oedometer tests were undertaken on a soil profile to 9 m depth. The results indicated collapsible behaviour at all profile depths. The influence of pre-consolidation stress and pedogenetic factors in the variability of the physical characteristics of the soil and in the magnitude of the collapse was noted. The collapse coefficient has been shown to be related to the both the microaggregate plasma and the varying nature of the pores and their interconnectivity.
Resumo:
Multilayer CVD coatings for high speed cutting applications were designed to achieve high wear and heat resistance during machining of steel alloys. In this work the microstructure and cutting performance of these novel multilayer CVD coatings are investigated and compared with standard CVD multilayer coatings. 3D-FIB tomography is used to characterize the microstructure of the layers, especially the transition between the Ti(C,N) and the Al(2)O(3) layer. The 3D reconstruction of the surface of the Ti(C,N) layer shows the formation of protruded Ti(C,N) grains with a very particular architecture, which penetrate into the Al(2)O(3) top-layer, providing a mechanical anchoring between both layers. Cemented carbides coated with the novel CVD multilayer present reduced crater and flank wear as well as improved adherence between the Al(2)O(3) top-layer and the Ti(C,N) layer leading to a dramatic improvement of cutting performance.
Resumo:
The high velocity oxygen fuel (HVOF) thermal spray process produces highly wear and/or corrosion resistant coatings. Tungsten carbide with a metallic binder is often used for this purpose. In this work, tungsten carbide coatings containing cobalt or nickel binder were produced by HVOF and characterised by optical and electron microscopy, hardness and a dry sand/rubber wheel abrasion test. The HVOF process produced dense coatings with low porosity levels and high hardness. The wear resistance of the specimens, which were surface treated, increased as the roughness percentage decreased. Tungsten carbide nickel based coating yielded the best wear resistance in the as sprayed condition. However, the wear rate and wear of the two coatings converged to the same values as the number of revolutions increased. Wear behaviour in the ground condition was similar, although the tungsten carbide cobalt based coating yielded better performance with increasing distance travelled during the wear test.
Resumo:
With the aim of investigating a laser-welded dissimilar joint of TWIP and TRIP steel sheets, the microstructure was characterized by means of OM, SEM, and EBSD to differentiate the fusion zone, heat-affected zone, and the base material. OIM was used to differentiate between ferritic, bainitic, and martensitic structures. Compositions were measured by means of optical emission spectrometry and EDX to evaluate the effect of manganese segregation. Microhardness measurements and tensile tests were performed to evaluate the mechanical properties of the joint. Residual stresses and XRD phase quantification were used to characterize the weld. Grain coarsening and martensitic areas were found in the fusion zone, and they had significant effects on the mechanical properties of the weld. The heat-affected zone of the TRIP steel and the corresponding base material showed considerable differences in the microstructure and properties. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper, composites from polypropylene and Kraft pulp (from Pinus radiata) were prepared. Phenyl isocyanate, unblocked and phenol blocked derivatives of 4,4`-methylenebis (phenyl isocyanate) (MDI) were used as coupling agents and the mechanical properties of the obtained composites analyzed. The results showed that the addition of such compatibilizers readily improved the tensile and flexural strengths of the composites. However, no significant variation in the mechanical properties was observed for composite formulations comprising different isocyanate compounds. Accordingly, the chemical structure of isocyanate derivatives did not affect extensively the mechanical properties of MDI-coupled pine fiber reinforced composites. These results were similar to those obtained in previous studies regarding the efficiency of organosilane coupling agents. In comparison to monoreactive isocyanates, the addition of MIDI increased considerably the mechanical properties of pine fiber-polypropylene composites. The mechanical anchoring of polymeric PP chains onto the irregular reinforcement surface supported this result. Non-isothermal DSC analysis showed a slowing effect of MDI on the crystallization kinetics of the coupled composites. This may have been the result of diminished polymer chain mobility in the matrix due to mechanical anchoring onto the fiber surface. Considering these results, the occurrence of strong bonds between the composite components was stated, rather than the unique existence of Van der Waals interactions among the non-polar structures. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In order to reduce energy costs, high-temperature insulation porous refractory ceramics have been subjected to increasing demands. Among the techniques used to produce these materials (such as the addition of foaming agents and organic compounds), the pore generation via phase transformation presents key aspects, such as easy processing and the absence of toxic volatiles. In this study, this technique was applied to produce porous ceramics by decomposing an aluminum magnesium hydro-carbonate known as hydrotalcite (Mg(6)Al(2)(CO(3))(OH)(16)center dot 4H(2)O). It was found out that by using this complex compound, a large fraction of pores can be generated and kept at high temperatures (above 1300 degrees C) due to the in situ formation of spinel-like phases (MgAl(2)O(4)). (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
This paper presents results of an experimental investigation carried out to determine the effects of the surface roughness of different materials on nucleate boiling heat transfer of refrigerants R-134a and R-123. Experiments have been performed over cylindrical surfaces of copper, brass and stainless steel. Surfaces have been treated by different methods in order to obtain an average roughness, Ra, varying from 0.03 mu m to 10.5 mu m. Boiling curves at different reduced pressures have been raised as part of the investigation. The obtained results have shown significant effects of the surface material, with brass being the best performing and stainless steel the worst. Polished surfaces seem to present slightly better performance than the sand paper roughened. Boiling on very rough surfaces presents a peculiar behavior characterized by good thermal performance at low heat fluxes, the performance deteriorating at high heat fluxes with respect to smoother surfaces. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
There are currently many types of protective materials for reinforced concrete structures and the influence of these materials in the chloride diffusion coefficient still needs more research. The aim of this paper is to study the efficacy of certain surface treatments (such as hydrophobic agents, acrylic coating, polyurethane coating and double systems) in inhibiting chloride penetration in concrete. The results indicated that all tested surface protection significantly reduced the sorptivity of concrete (reduction rate > 70%). However, only the polyurethane coating was highly effective in reducing the chloride diffusion coefficient (reduction rate of 86%). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Hydrophobic agents are surface protection materials capable of increasing the angle of contact between the water and the concrete surface. For this reason, hydrophobic agents reduce water (in liquid form) penetration in concrete. Therefore, many European construction regulating agencies recommend this treatment in their maintenance policy. Nonetheless, there continues to be a gap in the understanding about which transport mechanisms of the concrete are modified by the hidrophobic agents. The aim of this study was to fill this gap in regards to reinforced concrete structures inserted in a marine environment. To this end, certain tests were used: Two involving permeability mechanism, one determining capillary absorption, and the last, a migration test used to estimate the chloride diffusion coefficient in saturated condition. Results indicated the efficacy of the hydrophobic agents in cases where capillary suction is the mechanism of water penetration (reduced by 2.12 and 7.0 times, depending of the product). However, when the transport mechanism is permeability this product is not advisable. Moreover, it was demonstrated that the chloride diffusion coefficient (in saturated condition) is reduced by the hydrophobic agents, however, the magnitude of this reduction is minor (reduced by 11% and 17%, depending on the product).
Resumo:
A slope stability model is derived for an infinite slope subjected to unsaturated infiltration flow above a phreatic surface. Closed form steady state solutions are derived for the matric suction and degree of saturation profiles. Soil unit weight, consistent with the degree of saturation profile, is also directly calculated and introduced into the analyzes, resulting in closed-form solutions for typical soil parameters and an infinite series solution for arbitrary soil parameters. The solutions are coupled with the infinite slope stability equations to establish a fully realized safety factor function. In general, consideration of soil suction results in higher factor of safety. The increase in shear strength due to the inclusion of soil suction is analogous to making an addition to the cohesion, which, of course, increases the factor of safety against sliding. However, for cohesive soils, the results show lower safety factors for slip surfaces approaching the phreatic surface compared to those produced by common safety factor calculations. The lower factor of safety is due to the increased soil unit weight considered in the matric suction model but not usually accounted for in practice wherein the soil is treated as dry above the phreatic surface. The developed model is verified with a published case study, correctly predicting stability under dry conditions and correctly predicting failure for a particular storm.