63 resultados para SUBTROPICAL HIGHLAND GRASSLANDS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Until the year 2000, only three Rickettsia species were known in South America: (i) Rickettsia rickettsii, transmitted by the ticks Amblyomma cajennense, and Amblyomma aureolatum, reported in Colombia, Argentina, and Brazil, where it is the etiological agent of Rocky Mountain spotted fever; (ii) Rickettsia prowazekii, transmitted by body lice and causing epidemic typhus in highland areas, mainly in Peru; (iii) Rickettsia typhi, transmitted by fleas and causing endemic typhus in many countries. During this new century, at least seven other rickettsiae were reported in South America: Rickettsia felis infecting fleas and the tick-associated agents Rickettsia parkeri, Rickettsia massiliae, Candidatus ""Rickettsia amblyommii,"" Rickettsia bellii, Rickettsia rhipicephali, and Candidatus ""Rickettsia andeanae. "" Among these other rickettsiae, only R. felis, R. parkeri and R. massiliae are currently recognized as human pathogens. R. rickettsii is a rare agent in nature, infecting : <= 1% individuals in a few tick populations. Contrastingly, R. parkeri, Candidatus ""R. amblyommii, "" R. rhipicephali, and R. bellii are usually found infecting 10 to 100% individuals in different tick populations. Despite rickettsiae being transmitted transovarially through tick generations, low infection rates for R. rickettsii are possibly related to pathogenic effect of R. rickettsii for ticks, as shown for A. aureolatum under laboratory conditions. This scenario implies that R. rickettsii needs amplifier vertebrate hosts for its perpetuation in nature, in order to create new lines of infected ticks (horizontal transmission). In Brazil, capybaras and opossums are the most probable amplifier hosts for R. rickettsii, among A. cajennense ticks, and small rodents for A. aureolatum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phylogenetic analyses based on mitochondrial 16S rDNA sequences were generated from Rhipicephalus sanguineus group specimens collected in 29 localities among 9 Latin-American countries, plus ticks collected in South Africa, Spain, and Italy. Sequences from Latin America generated six different haplotypes (A, B, C, D, E, and F). Phylogenetic analyses generated trees that segregated our tick sequences into two distinct clades: one is represented by haplotypes A-C, and South African R. sanguineus and Rhipicephalus turanicus ticks; the second clade is represented by haplotypes D-F, and European R. sanguineus and R. turanicus ticks. When haplotypes A-Fare plotted in the Latin America map according to their geographical coordinates, it is clearly seen that haplotypes D-F are restricted to the southern portion of this continent, whereas haplotypes A-C are distributed in areas between northern Mexico and Brazil (except for the extreme south of this last country, where haplotype E was present). Hence, our phylogenetic analyses separated New World specimens of R. sanguineus into two distinct clades, one represented by tropical and subtropical populations (haplotypes A-C), here designated as the `tropical` species. On the other hand, haplotypes D-F are here designated as the `temperate` species because of their distribution in the southern portion of South America. Until recently, it was assumed that the R. sanguineus group was represented by a single species in the New World, namely R. sanguineus. While the present results coupled with recent studies support the presence of at least two species under the taxon R. sanguineus in the New World, they also show that even in the Old World, the taxon R. sanguineus might be represented by more than one species, since our phylogenetic analysis segregated European and South African R. sanguineus ticks into two distinct clades. The same can be applied for Spanish and South African R. turanicus. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The maned wolf (Chrysocyon brachyurus) inhabits the savannah-like Cerrado of Brazil. Although 80% of this biome has already been affected by human activity, little is known about maned wolf abundance. Using mark-recapture models, we obtained the first density estimate from central Brazil, the core of maned wolf distribution. With 5.19 individuals/100 km(2), even large reserves support only small maned wolf populations. Therefore, long-term conservation of the maned wolf depends on land management outside of reserves. ( JOURNAL OF WILDLIFE MANAGEMENT 73( 1): 68-71; 2009)