156 resultados para SELECTIVE DAMAGE
Resumo:
The effects of prolonged recruitment manoeuvre (PRM) were compared with sustained inflation (SI) in paraquat-induced mild acute lung injury (ALI) in rats. Twenty-four hours after ALI induction, rats were anesthetized and mechanically ventilated with VT = 6 ml/kg and positive end-expiratory pressure (PEEP) = 5 cmH(2)O for 1 h. SI was performed with an instantaneous pressure increase of 40 cmH(2)O that was sustained for 40 s, while PRM was done by a step-wise increase in positive inspiratory pressure (PIP) of 15-20-25 cmH(2)O above a PEEP of 15 cm H(2)O (maximal PIP = 40 cmH(2)O), with interposed periods of PIP = 10 cmH(2)O above a PEEP = 15 cmH(2)O. Lung static elastance and the amount of alveolar collapse were more reduced with PRM than SI, yielding improved oxygenation. Additionally, tumour necrosis factor-alpha, interleukin-6, interferon-gamma, and type III procollagen mRNA expressions in lung tissue and lung epithelial cell apoptosis decreased more in PRM. In conclusion, PRM improved lung function, with less damage to alveolar epithelium, resulting in reduced pulmonary injury. (C) 2009 Elsevier BLV. All rights reserved.
Resumo:
Vagal Denervation and Neurally Mediated Syncope. A 15-year-old female patient presented with frequent episodes of vasovagal syncope refractory to non-pharmacological and pharmacological measures. Two tilt-table tests performed before and after conventional therapy were positive and reproduced the patient`s clinical symptoms. Selective vagal denervation, guided by HFS, was performed. Six radiofrequency pulses were applied on the left and right sides of the interatrial septum, abolishing vagal responses at these locations. Basal sinus node and Wenckebach cycle lengths changed significantly following ablation. A tilt test performed after denervation was negative and revealed autonomic tone modification. The patient reported significant improvement in quality of life and remained asymptomatic for 9 months after denervation. After this period, three episodes of NMS occurred during a 4-month interval and a tilt test performed 11 months after the procedure demonstrated vagal activity recovery. (J Cardiovasc Electrophysiol, Vol. 20, pp. 558-563, May 2009).
Resumo:
OBJECTIVES The glycosaminoglycan (GAG) layer is referred to as a bladder protective factor. We reproduced an experimental model of urothelial damage to assess GAG metabolism in the process of injury and recovery of the urothelium. METHODS Wistar female rats were bladder catheterized and instilled with either protamine sulfate (PS groups) or sterile saline (control groups). At different days after the procedure, 24-hour urine samples were obtained. The urinary levels of hyaluronic acid (HA) and sulfated glycosaminoglycan were determined in all groups and in nonmanipulated rats (day 0). Additionally, sulfated-GAG synthesis was assessed by the incorporation of [S-35]-inorganic sulfate. The bladders were analyzed by histochemical staining for HA and immunofluorescence for heparin sulfate and syndecan-4. RESULTS Urinary HA and sulfated-GAG were elevated after PS injection (P <0.05). A greater concentration of [S-35] -labeled GAG in the PS group animals on the fifth day and, especially, on the seventh day represented increased GAG synthesis at these periods (P <0.05). Bladder sections from the PS group animals on day 1 showed a greater amount of HA in the urothelium. PS instillation damaged the urothelium layer of heparin sulfate and syndecan-4 seen in the control animals. On day 5, patchy areas of a restored layer were seen, and, on day 7, this layer had completely regenerated. CONCLUSIONS Urinary GAG cannot differentiate urothelial damage from recovery. Elevated levels of urinary GAG can result from either desquamation of the surface cell GAG layer or increased GAG synthesis to regenerate the damaged urothelium.
Resumo:
Objective: To evaluate the importance of receptor activator of nuclear factor kappa B (RANK)/receptor activator of nuclear factor kappa B ligand (RANKL)/osteoprotegerin (OPG) modulation in active polyarticular juvenile idiopathic arthritis (pJIA) patients with and without bone erosions. Methods: Thirty female patients (mean age 11.07 +/- 3.77 years, range 4-17 years) with active pJIA and 30 healthy gender-and age-matched controls were consecutively selected for this study. All involved articulations were assessed by X-ray and examined for the presence of bone erosions. The serum levels of RANKL and OPG were measured using an enzyme-linked immunosorbent assay (ELISA). Results: Patients with active pJIA had higher levels of serum RANKL than controls [2.90 (0.1-37.4) vs. 0.25 (0.1-5.7) pg/mL, p=0.007] and a lower OPG/RANKL ratio [21.25 (1.8-897.6) vs. 347.5 (9-947.8), p=0.005]. However, levels of OPG were comparable in both groups [55.24 (28.34-89.76) vs. 64.42 (30.68-111.28) pg/mL, p=0.255]. Higher levels of serum RANKL and a lower OPG/RANKL ratio were also observed in active pJIA patients with bone erosions compared to controls [3.49 (0.1-37.4) vs. 0.25 (0.1-5.7) pg/mL, p=0.0115 and 14.3 (1.8-897.6) vs. 347.5 (9-947.8), p=0.016]. However, RANKL levels and OPG/RANKL ratio were similar in pJIA patients without bone erosion and controls [1.75 (0.1-10.9) vs. 0.25 (0.1-5.7) pg/mL, p=0.055 and 29.2 (3.3-756.8) vs. 347.5 (9-947.8), p=0.281]. Conclusion: These data suggest that active pJIA with bone erosions is associated with high serum levels of RANKL and a low OPG/RANKL ratio, indicating that these alterations may reflect bone damage in this disease.
Resumo:
Sepsis induces a systemic inflammatory response leading to tissue damage and cell death. LPS tolerance affects inflammatory response. To comprehend potential new mechanisms of immune regulation in endotoxemia, we examined macrophage mRNA expression by macroarray affected by LPS tolerance. LPS tolerance was induced with subcutaneous administration of 1 mg/kg/day of LPS over 5 days. Macrophages were isolated from the spleen and the expression of 1200 genes was quantitatively analyzed by the macroarray technique. The tolerant group displayed relevant changes in the expression of 84 mRNA when compared to naive mice. A functional group of genes related to cell death regulation was identified. PARP-1, caspase 3, FASL and TRAIL genes were confirmed by RT-PCR to present lower expression in tolerant mice. In addition, reduced expression of the pro-inflammatory genes TNF-alpha and IFN-gamma in the tolerant group was demonstrated. Following this, animals were challenged with polymicrobial sepsis. Flow cytometry analysis showed reduced necrosis and apoptosis in macrophages from the tolerant group compared to the naive group. Finally, a survival study showed a significant reduction in mortality in the tolerant group. Thus, in the current study we provide evidence for the selective reprogramming of the gene expression of cell death pathways during LPS tolerance and link these changes to protection from cell death and enhanced survival rates. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Extensive lymphocyte apoptosis may be an important cause of immune suppression in sepsis. Here we investigated the effect of LPS tolerance on lymphocyte apoptosis in an experimental model of polymicrobial infection. Tolerance was induced by the injection of lipopolysaccharide (1.0 mg/kg/subcutaneously) once a day for 5 days. Macroarray analysis of mRNA isolated from T-(CD4) lymphocytes was used to identify genes that are differentially expressed during LPS tolerance. In addition, assessment of the expression of apoptosis-associated lymphocyte gene products and apoptotic events was performed on the 8th day; 6 h after the terminal challenge with polymicrobial infection or high-dose LPS administration. Survival studies with polymicrobial infection were also conducted. LPS tolerance induced a broad reprogramming of cell death pathways, including a suppression of receptor-mediated and mitochondrial apoptotic pathways, inflammatory caspases, alternate apoptotic pathways, as well as reduced expression of genes involved in necrosis. These alterations led to a marked resistance of lymphocytes against cell death during the subsequent period of sepsis. In addition, LPS tolerance produced an increased differentiation of T-lymphocytes to T(H)1 and T(H)2, with a T(H)1 differentiation predominance. Thus, in the current study we provide an evidence for a marked reprogramming of gene expression of multiple cell death pathways during LPS tolerance. These alterations may play a significant role in the observed protection of the animals from a subsequent lethal polymicrobial sepsis challenge. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
The present study aimed to verify the time course of the effects of environmental levels of urban air pollution toxicity on lung arterioles. BALB/c mice (n = 56) were continuously exposed to selective chambers equipped with (filtered, F) or without (non-filtered, NF) filter devices for particles and toxic gases for 24 h/day, over 14, 21, 30 or 45 days. After exposure, we evaluated the lumen-wall relationship (an estimator of arteriolar narrowing), endothelial nitric oxide synthase (eNOS) and endothelin type A receptor (ETAr) expression in the vascular wall and inflammatory influx of the peribronchiolar area. Concentrations of fine particulate matter (PM <= 2.5 mu g/m(3)), nitrogen dioxide (NO(2)), black smoke (BS), humidity and temperature in both the environment and inside the chambers were measured daily. Filters cleared 100% of BS and 97% of PM inside the F chamber. The arteriole wall of the lungs of mice from NF chamber had an increased ETAr expression (p <= 0.042) concomitant to a decrease in the lumen/wall ratio (p = 0.02) on the early days of exposure, compared to controls. They also presented a progressive increment of inflammatory influx in the peribronchiolar area during the study (p = 0.04) and decrement of the eNOS expression on the 45th day of exposure in both vascular layers (p <= 0.03). We found that after 14 days of exposure, the ambient levels of air pollutants in Sao Paulo induced vasoconstriction that was associated with an increase in ETAr expression. These vascular results do not appear to be coupled to the progressive inflammatory influx in lung tissue, suggesting a down-regulation of vasoconstrictive mechanisms through an imbalance in the cytokines network. It is likely that these responses are protective measures that decrease tissue damage brought about by continuous exposure to air pollutants. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Brain injury is responsible for significant morbidity and mortality in trauma patients, but controversy still exists over therapeutic management for these patients. The objective of this study was to analyze the effect of phototherapy with low intensity lasers on local and systemic immunomodulation following cryogenic brain injury. Laser phototherapy was applied (or not-controls) immediately after cryogenic brain injury performed in 51 adult male Wistar rats. The animals were irradiated twice (3 h interval), with continuous diode laser (gallium-aluminum-arsenide (GaAlAs), 780 nm, or indium-gallium-aluminum-phosphide (InGaAlP), 660 nm) in two points and contact mode, 40 mW, spot size 0.042 cm(2), 3 J/cm(2) and 5 J/cm(2) (3 s and 5 s, respectively). The experimental groups were: Control (non-irradiated), RL3 (visible red laser/ 3 J/cm(2)), RL5 (visible red laser/5 J/cm(2)), IRL3 (infrared laser/ 3 J/cm(2)), IRL5 (infrared laser/5 J/cm(2)). The production of interleukin-1IL-1 beta (IL-1 beta), interleukin6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-alpha (TNF-alpha) was analyzed by enzyme immunoassay technique (ELISA) test in brain and blood samples. The IL-1 beta concentration in brain of the control group ;was significantly reduced in 24 h (p < 0.01). This reduction was also observed in the RL5 and IRL3 groups. The TNF-alpha and IL-6 concentrations increased significantly (p < 0.01 and p < 0.05, respectively) in the blood of all groups, except by the IRL3 group. The IL-6 levels in RL3 group were significantly smaller than in control group in both experimental times. IL-10 concentration was maintained stable in all groups in brain and blood. Under the conditions of this study, it is possible to conclude that the laser phototherapy can affect TNF-alpha, IL-1 beta and IL-6 levels in the brain and in circulation in the first 24 h following cryogenic brain injury. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: Recently, studies have been conducted examining the efficacy of 3% hypertonic saline solution (HS) for the treatment of traumatic brain injury; however, few studies have analyzed the effects of 3% hemorrhagic shock during hemorrhagic shock. The aim of this study was to test the potential immunomodulatory benefits of 3% hemorrhagic shock resuscitation over standard fluid resuscitation. METHODS: Wistar rats were bled to a mean arterial pressure of 35 mm Hg and then randomized into 3 groups: those treated with lactated Ringer`s solution (LR; 33 mL/kg, n = 7), 3% HS (10 mL/kg, n = 7), and 7.5% HS (4 mL/kg, n = 7). Half of the extracted blood was reinfused after fluid resuscitation. Animals that did not undergo shock served as controls (n = 5). Four hours after hemorrhagic shock, blood was collected for the evaluation of tumor necrosis factor-a and interleukin-6 by enzyme immunoassay. Lung and intestinal samples were obtained for histopathologic analysis. RESULTS: Animals in the HS groups had significantly higher mean arterial pressure than those in the LR group 1 hour after treatment. Osmolarity and sodium levels were markedly elevated in the HS groups. Tumor necrosis factor-alpha and interleukin-6 levels were similar between the control and HS groups but significantly higher in the LR group (P < .05). The lung injury score was significantly higher in the LR group compared with the 7.5% HS and 3% HS groups (5.7 +/- 0.7, 2.1 +/- 0.4, and 2.7 +/- 0.5, respectively). Intestinal injury was attenuated in the 7.5% HS and 3% HS groups compared with the LR group (2.0 +/- 0.6, 2.3 +/- 0.4, and 5.9 +/- 0.6, respectively). CONCLUSIONS: A small-volume resuscitation strategy modulates the inflammatory response and decreases end-organ damage after HS. Three percent HS provides immunomodulatory and metabolic effects similar to those observed with conventional concentrations of HS. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Resistance to chemotherapeutic drugs can be an obstacle to a successful treatment of cancer patients in part associated with individual response and differences in the DNA repair system. The Comet assay is an informative test to investigate DNA damage and repair in cells in response to a variety of DNA-damaging agents, including chemotherapeutic drugs. The aim of this study was to assess leukocytes damage after in-vitro cisplatin treatment and DNA repair action using the Comet assay in 20 patients with melanoma and 20 cancer-free individuals. Leukocytes` DNA damage before and after cisplatin treatment, in three different concentrations, was analyzed. The DNA repair capability was investigated after 1-5 h of in-vitro cells growing without cisplatin. The Comet score of the patients` basal DNA damage was higher than that observed in controls, but the difference was not statistically significant (P=0.85). Although both groups had similar Comet scores to all cisplatin concentrations tested and the DNA repair times, the basal DNA damage (P < 0.001) and cisplatin damages (P < 0.005) were statistically lower than the different repair times investigated. Considering the progressive increase in the Comet score due to repair time, the negative results here observed could be associated with the reduced cell culture incubation that should be better evaluated. Considering the mutagenic action of cisplatin on tumor cells and the importance of individual DNA repair mechanisms in the chemotherapeutic melanoma treatment, the peripheral leukocytes could be particularly useful as a tool for DNA repair response identified by the Comet assay. Melanoma Res 21:99-105 (C) 2011 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
OBJECTIVE: We introduce a technique for performing a selective amygdalohippocampectomy (AH) through a minisupraorbital approach. METHODS: A minisupraorbital craniotomy and an anterior selective AH were performed in 8 cadaver heads (16 sides). The anatomic specimens were analyzed, and the extent of resection of the hippocampus and amygdala was evaluated. Surgically relevant measurements were performed using anatomic specimens. An image-guided system was used to document the extent of the anterior AH. Laboratory data were used to support the clinical application of the technique. RESULTS: The anterior route allowed removal of the amygdala and hippocampus, as confirmed by anatomic assessment. The image-guided system and anatomic evaluation confirmed that the amygdala and hippocampus can be accessed and removed through this route. The mean distance between the anterior aspect of the uncus and the tip of the temporal horn was 17.0 +/- 4.6 mm; the mean distance from the head of the hippocampus to the posterior border of the cerebral peduncles was 26.0 +/- 3.2 mm. Clinical application resulted in satisfactory removal of the amygdala and hippocampus. CONCLUSION: The anterior route for selective AH is a logical and straightforward approach to the mesial temporal lobe. Compared with other variations, it is less invasive and destructive, especially in terms of the fibers of the optic pathway, temporal stem, and lateral temporal neocortex.
Resumo:
Objective: To analyze the antiangiogenic effects of the selective cyclooxygenase-2 (COX-2) inhibitor parecoxib on the growth of endometrial implants in a rat model of peritoneal endometriosis. Design: Pharmacologic interventions in an experimental model of peritoneal endometriosis. Setting: Research laboratory in the Federal University of Rio de Janeiro. Animal(s): Twenty female Sprague-Dawley rats with experimentally induced endometriosis. Intervention(s): After implantation and establishment of autologous endometrium onto the peritoneum abdominal wall, rats were randomized into groups and treated with parecoxib or the vehicle by IM injection for 30 days. Main Outcome Measure(s): Vascular density, the expression of vascular endothelial growth factor (VEGF) and its receptor Flk-1, the distribution of activated macrophages, the expression of COX-2, and the prostaglandin concentration in the endometriotic lesions treated with parecoxib were analyzed. Result(s): The treatment significantly decreased the implant size, and histologic examination indicated mostly atrophy and regression. A reduction in microvessel density and in the number of macrophages, associated with decreased expression of VEGF and Flk-1, also were observed. The treatment group showed a low concentration of prostaglandin E(2). Conclusion(s): These results suggest that the use of COX-2 selective inhibitors could be effective to suppress the establishment and growth of endometriosis, partially through their antiangiogenic activity. (Fertil Steril (R) 2010; 93: 2674-9. (C) 2010 by American Society for Reproductive Medicine.)
Resumo:
Immunoglobulin A deficiency (IgAD) is considered the most common form of primary immunodeficiency. The majority of IgA-deficient individuals are considered asymptomatic, even though IgAD has been associated with an increased frequency of recurrent infections, allergy, and autoimmune diseases. In this study we evaluate the Natural autoantibodies (NatAbs) reactivity to phosphorylcholine (PC) and to some pro-inflammatory molecules in IgAD with or without autoimmune disorders. We observed that in the absence of IgA there is an enhancement of IgG subclasses functioning as NatAbs against PC. Immunoglobulin G (IgG) against lipopolysaccharide, C-reactive protein, and IgA was found in IgAD, regardless of the autoimmune manifestations. Nonetheless, IgAD patients with autoimmune disease showed significantly higher IgG reactivity against pro-inflammatory molecules, such as cardiolipin, oxidized low-density lipoproteins, and phosphatidylserine, with positive correlation between them. In conclusion, the IgG NatAbs against PC may represent a compensatory defense mechanism against infections and control excess of inflammation, explaining the asymptomatic status in the IgA deficiency.
Resumo:
Free fatty acids (FFAs) have been shown to produce alteration of heart rate variability (HRV) in healthy and diabetic individuals. Changes in HRV have been described in septic patients and in those with hyperglycemia and elevated plasma FFA levels. We studied if sepsis-induced heart damage and HRV alteration are associated with plasma FFA levels in patients. Thirty-one patients with sepsis were included. The patients were divided into two groups: survivors(n = 12) and nonsurvivors (n = 19). The following associations were investigated: (a) troponin I elevation and HRV reduction and (b) clinical evolution and HRV index, plasma troponin, and plasma FFA levels. Initial measurements of C-reactive protein and gravity Acute Physiology and Chronic Health Evaluation scores were similar in both groups. Overall, an increase in plasma troponin level was related to increased mortality risk. From the first day of study, the nonsurvivor group presented a reduced left ventricular stroke work systolic index and a reduced low frequency (LF) that is one of HRV indexes. The correlation coefficient for LF values and troponin was r(2) = 0.75 (P < 0.05). All patients presented elevated plasma FFA levels on the first day of the study (5.11 +/- 0.53 mg/mL), and this elevation was even greater in the nonsurvivor group compared with the survivors (6.88 +/- 0.13 vs. 3.85 +/- 0.48 mg/mL, respectively; P < 0.05). Cardiac damage was confirmed by measurement of plasma troponin I and histological analysis. Heart dysfunction was determined by left ventricular stroke work systolic index and HRV index in nonsurvivor patients. A relationship was found between plasma FFA levels, LFnu index, troponin levels, and histological changes. Plasma FFA levels emerged as possible cause of heart damage in sepsis.
Resumo:
Introduction: Recruitment maneuvers (RMs) seem to be more effective in extrapulmonary acute lung injury (ALI), caused mainly by sepsis, than in pulmonary ALI. Nevertheless, the maintenance of adequate volemic status is particularly challenging in sepsis. Since the interaction between volemic status and RMs is not well established, we investigated the effects of RMs on lung and distal organs in the presence of hypovolemia, normovolemia, and hypervolemia in a model of extrapulmonary lung injury induced by sepsis. Methods: ALI was induced by cecal ligation and puncture surgery in 66 Wistar rats. After 48 h, animals were anesthetized, mechanically ventilated and randomly assigned to 3 volemic status (n = 22/group): 1) hypovolemia induced by blood drainage at mean arterial pressure (MAP)approximate to 70 mmHg; 2) normovolemia (MAP approximate to 100 mmHg), and 3) hypervolemia with colloid administration to achieve a MAP approximate to 130 mmHg. In each group, animals were further randomized to be recruited (CPAP = 40 cm H(2)O for 40 s) or not (NR) (n = 11/group), followed by 1 h of protective mechanical ventilation. Echocardiography, arterial blood gases, static lung elastance (Est, L), histology (light and electron microscopy), lung wet-to-dry (W/D) ratio, interleukin (IL)-6, IL-1 beta, caspase-3, type III procollagen (PCIII), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) mRNA expressions in lung tissue, as well as lung and distal organ epithelial cell apoptosis were analyzed. Results: We observed that: 1) hypervolemia increased lung W/D ratio with impairment of oxygenation and Est, L, and was associated with alveolar and endothelial cell damage and increased IL-6, VCAM-1, and ICAM-1 mRNA expressions; and 2) RM reduced alveolar collapse independent of volemic status. In hypervolemic animals, RM improved oxygenation above the levels observed with the use of positive-end expiratory pressure (PEEP), but increased lung injury and led to higher inflammatory and fibrogenetic responses. Conclusions: Volemic status should be taken into account during RMs, since in this sepsis-induced ALI model hypervolemia promoted and potentiated lung injury compared to hypo-and normovolemia.