86 resultados para Restrictive Cardiomyopathy
Resumo:
Objective: Right ventricular failure during left ventricular assist device (WAD) support can result in severe hemodynamic compromise with high mortality. This study investigated the acute effects of cavopulmonary anastomosis on right ventricular loading and WAD performance in a model of severe biventricular failure. Methods: LVAD support was performed by means of centrifugal pump implantation in 14 anesthetized dogs (20-30 kg) with severe biventricular failure obtained by ventricular fibrillation induction. Animals were randomized to be submitted to classical cavopulmonary anastomosis (Glenn shunt) or to control group and were maintained under WAD support for 2 h. Left and right atrial, right ventricular and systemic pressures were monitored, white total pulmonary flow was simultaneously recorded by transonic flowmeters located on the superior vena cava and pulmonary trunk. Blood gas and venous lactate determinations were also obtained. Results: Ventricular fibrillation maintenance resulted in acute WAD performance impairment after 90 min in the control group, while animals with Glenn circuit maintained normal WAD pump flow (55 +/- 13 ml kg(-1) min(-1) vs 21 +/- 4 ml kg(-1) min(-1), p < 0.001) and better peripheral perfusion (blood lactate of 29 +/- 10 pg/ml vs 46 +/- 9 pg/ml, p < 0.001). Left and right atrial pressures did not change significantly, while right ventricular pressure was tower in animals with Glenn circuit (13 +/- 3 mmHg vs 22 +/- 8 mmHg, p = 0.005). Right ventricular unloading with Glenn shunt also resulted in superior total pulmonary flow (59 +/- 13 ml kg(-1) min(-1) vs 17 +/- 3 ml kg(-1) min(-1), p < 0.001). Conclusion: The concomitant use of cavopulmonary anastomosis during LVAD support in a model of severe biventricular failure limited right ventricular overloading and resulted in better hemodynamic performance. (C) 2008 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.
Resumo:
Background Chronic aortic valve disease (AVD) is characterized by progressive accumulation of interstitial myocardial fibrosis (MF). However, assessment of MF accumulation has only been possible through histologic analyses of endomyocardial biopsies. We sought to evaluate contrast-enhanced magnetic resonance imaging (ce-MRI) as a noninvasive method to identify the presence of increased MF in patients with severe AVD. Methods Seventy patients scheduled to undergo aortic valve replacement surgery were examined by cine and ce-MRI in a 1.5-T scanner. Cine images were used for the assessment of left ventricular (LV) volumes, mass, and function. Delayed-enhancement images were used to characterize the regions of MF. In addition, histologic analyses of myocardial samples obtained during aortic valve replacement surgery were used for direct quantification of interstitial MF. Ten additional subjects who died of noncardiac causes served as controls for the quantitative histologic analyses. Results Interstitial MF determined by histopathologic analysis was higher in patients with AVID than in controls (2.7% +/- 2.0% vs 0.6% +/- 0.2%, P =.001). When compared with histopathologic results, ce-MRI demonstrated a sensitivity of 74%, a specificity of 81%, and an accuracy of 76% to identify AVD patients with increased interstitial MF There was a significant inverse correlation between interstitial MF and LV ejection fraction (r = -0.67, P <.0001). Accordingly, patients with identifiable focal regions of MF by ce-MRI exhibited worse LV systolic function than those without MF (45% +/- 14% vs 65% +/- 14%, P <.0001). Conclusions Contrast-enhanced MRI allows for the noninvasive detection of focal regions of MF in patients with severe AVD. Moreover, patients with identifiable MF by ce-MRI exhibited worse LV functional parameters. (Am Heart J 2009; 157:361-8.)
Resumo:
DE MATOS, L. D. N. J., N. D. A. O. CALDEIRA, P. D. S. PERLINGEIRO, I. L. G. DOS SANTOS, C. E. NEGRAO and L. F. AZEVEDO. Cardiovascular Risk and Clinical Factors in Athletes: 10 Years of Evaluation. Med. Sci. Sports Exerc., Vol. 43, No. 6, pp. 943-950, 2011. Purpose: Preparticipation screening in athletes is a very current but controversial theme. Part of this controversy is due to the cost benefit, especially when the screening is merely used as a prevention of sudden cardiac death caused by rare and hereditary diseases. The purpose of this study was to describe the prevalence of preexisting diseases, cardiovascular risk factor for cardiovascular diseases development, and hematological profile in a population of amateur and professional athletes. Methods: Data of 623 athletes (529 men and 94 women), aged 13-77 yr, were analyzed to detect preexisting diseases. The variables total cholesterol, LDL, HDL, triglycerides, fasting glucose, body mass index, hemoglobin, hematocrit, and ferritin were analyzed in two groups according to age, that is, younger and older 35 yr old, and their prevalence (%) and distribution in quartiles were presented. chi(2) test and Pearson product-moment correlation coefficients between variables were applied, and P < 0.05 was adopted for significance. Results: Hypertension was the most prevalent preexisting diseases, although the data showed low prevalence of cardiomyopathy. Cardiovascular risk factors were prevalent in both genders. There were positive correlations between cardiovascular risk factors and age and between body mass index and lipid levels in male athletes. Also, there was a high prevalence of low ferritin levels for women, with positive correlation between the levels of hemoglobin and ferritin. Conclusions: In the present study, hypertension was the most prevalent diagnosed disease, and cardiovascular risk factors showed important prevalence, especially in athletes older than 35 yr. Although physical training represents a cardioprotective factor to the onset of cardiovascular disease, it does not exclude the prevalence of risk factors and diseases in athletes.
Resumo:
Familial hypertrophic cardiomyopathy (FHC) is frequently caused by cardiac myosin-binding protein C (cMyBP-C) gene mutations, which should result in C-terminal truncated mutants. However, truncated mutants were not detected in myocardial tissue of FHC patients and were rapidly degraded by the ubiquitin-proteasome system (UPS) after gene transfer in cardiac myocytes. Since the diversity and specificity of UPS regulation lie in E3 ubiquitin ligases, we investigated whether the muscle-specific E3 ligases atrogin-1 or muscle ring finger protein-1 (MuRF1) mediate degradation of truncated cMyBP-C. Human wild-type (WT) and truncated (M7t, resulting from a human mutation) cMyBP-C species were co-immunoprecipitated with atrogin-1 after adenoviral overexpression in cardiac myocytes, and WT-cMyBP-C was identified as an interaction partner of MuRF1 by yeast two-hybrid screens. Overexpression of atrogin-1 in cardiac myocytes decreased the protein level of M7t-cMyBP-C by 80% and left WT-cMyBP-C level unaffected. This was rescued by proteasome inhibition. In contrast, overexpression of MuRF1 in cardiac myocytes not only reduced the protein level of WT- and M7t-cMyBP-C by > 60%, but also the level of myosin heavy chains (MHCs) by > 40%, which were not rescued by proteasome inhibition. Both exogenous cMyBP-C and endogenous MHC mRNA levels were markedly reduced by MuRF1 overexpression. Similar to cardiac myocytes, MuRF1-overexpressing (TG) mice exhibited 40% lower levels of MHC mRNAs and proteins. Protein levels of cMyBP-C were 29% higher in MuRF1 knockout and 34% lower in TG than in WT, without a corresponding change in mRNA levels. These data suggest that atrogin-1 specifically targets truncated M7t-cMyBP-C, but not WT-cMyBP-C, for proteasomal degradation and that MuRF1 indirectly reduces cMyBP-C levels by regulating the transcription of MHC.
Resumo:
Chagas disease, characterized by acute myocarditis and chronic cardiomyopathy, is caused by infection with the protozoan parasite Trypanosoma cruzi. We sought to identify genes altered during the development of parasite-induced cardiomyopathy. Microarrays containing 27,400 sequence-verified mouse cDNAs were used to analyze global gene expression changes in the myocardium of a murine model of chagasic cardiomyopathy. Changes in gene expression were determined as the acute stage of infection developed into the chronic stage. This analysis was performed on the hearts of male CD-1 mice infected with trypomastigotes of T. cruzi (Brazil strain). At each interval we compared infected and uninfected mice and confirmed the microarray data with dye reversal. We identified eight distinct categories of mRNAs that were differentially regulated during infection and identified dysregulation of several key genes. These data may provide insight into the pathogenesis of chagasic cardiomyopathy and provide new targets for intervention. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The detection of replicative intermediate RNAs as markers of active replication of RNA viruses is an essential tool to investigate pathogenesis in acute viral infections, as well as in their long-term sequelae. In this regard, strand-specific PCR has been used widely to distinguish (-) and (+) enteroviral RNAs in pathogenesis studies of diseases such as dilated cardiomyopathy. It has been generally assumed that oligonucleotide-primed reverse transcription of a given RNA generates only the corresponding specific cDNA, thus assuring the specificity of a PCR product amplified from it. Nevertheless, such assumed strand-specificity is a fallacy, because falsely primed cDNAs can be produced by RNA reverse transcription in the absence of exogenously added primers, (cDNA(primer)(-)), and such falsely primed cDNAs are amplifiable by PCR in the same way as the correctly primed cDNAs. Using as a prototype the coxsackievirus B5 (CVB5), a (+) strand RNA virus, it was shown that cDNA(primer)(-) renders the differential detection of viral (-) and (+) RNAs by conventional PCR virtually impossible, due to gross non-specificity. Using in vitro transcribed CVB5 RNAs (+) and (-), it was shown that cDNA(primer)(-) could be removed effectively by magnetic physical separation of correctly primed biotinylated cDNA. Such strategy enabled truly strand-specific detection of RNA (-) and (+), not only for CVB5, but also for other non-polio enteroviruses. These findings indicate that previous conclusions supporting a role for the persistence of actively replicating enterovirus in the pathogenesis of chronic myocarditis should be regarded with strong skepticism and purification of correctly primed cDNA should be used for strand-specific PCR of viral RNA in order to obtain reliable information on this important subject. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Chagas disease is a chronic, systemic, parasitic infection caused by the protozoan Trypanosoma cruzi, and was discovered in 1909. The disease affects about 8 million people in Latin America, of whom 30-40% either have or will develop cardiomyopathy, digestive megasyndromes, or both. In the past three decades, the control and management of Chagas disease has undergone several improvements. Large-scale vector control programmes and screening of blood donors have reduced disease incidence and prevalence. Although more effective trypanocidal drugs are needed, treatment with benznidazole (or nifurtimox) is reasonably safe and effective, and is now recommended for a widened range of patients. Improved models for risk stratification are available, and certain guided treatments could halt or reverse disease progression. By contrast, some challenges remain: Chagas disease is becoming an emerging health problem in non-endemic areas because of growing population movements; early detection and treatment of asymptomatic individuals are underused; and the potential benefits of novel therapies (eg, implantable cardioverter defibrillators) need assessment in prospective randomised trials.
Resumo:
Evidence from our laboratory has shown alterations in myocardial structure in severe sepsis/septic shock. The morphological alterations are heralded by sarcolemmal damage, characterized by increased plasma membrane permeability caused by oxidative damage to lipids and proteins. The critical importance of the dystrophin-glycoprotein complex (DGC) in maintaining sarcolemmal stability led us to hypothesize that loss of dystrophin and associated glycoproteins could be involved in early increased sarcolemmal permeability in experimentally induced septic cardiomyopathy. Male C57Bl/6 mice were subjected to sham operation and moderate (MSI) or severe (SSI) septic injury induced by cecal ligation and puncture (CLP). Using western blot and immunofluorescence, a downregulation of dystrophin and beta-dystroglycan expression in both severe and moderate injury could be observed in septic hearts. The immunofluorescent and protein amount expressions of laminin-alpha 2 were similar in SSI and sham-operated hearts. Consonantly, the evaluation of plasma membrane permeability by intracellular albumin staining provided evidence of severe injury of the sarcolemma in SSI hearts, whereas antioxidant treatment significantly attenuated the loss of sarcolemmal dystrophin expression and the increased membrane permeability. This study offers novel and mechanistic data to clarify subcellular events in the pathogenesis of cardiac dysfunction in severe sepsis. The main finding was that severe sepsis leads to a marked reduction in membrane localization of dystrophin and beta-dystroglycan in septic cardiomyocytes, a process that may constitute a structural basis of sepsis-induced cardiac depression. In addition, increased sarcolemmal permeability suggests functional impairment of the DGC complex in cardiac myofibers. In vivo observation that antioxidant treatment significantly abrogated the loss of dystrophin expression and plasma membrane increased permeability supports the hypothesis that oxidative damage may mediate the loss of dystrophin and beta-dystroglycan in septic mice. These abnormal parameters emerge as therapeutic targets and their modulation may provide beneficial effects on future cardiovascular outcomes and mortality in sepsis. Laboratory Investigation (2010) 90, 531-542; doi: 10.1038/labinvest.2010.3; published online 8 February 2010
Resumo:
The mechanism of isoproterenol-induced myocardial damage is unknown, but a mismatch of oxygen supply vs. demand following coronary hypotension and myocardial hyperactivity is the best explanation for the complex morphological alterations observed. Severe alterations in the structural integrity of the sarcolemma of cardiomyocytes have been demonstrated to be caused by isoproterenol. Taking into account that the sarcolemmal integrity is stabilized by the dystrophin-glycoprotein complex (DGC) that connects actin and laminin in contractile machinery and extracellular matrix and by integrins, this study tests the hypothesis that isoproterenol affects sarcolemmal stability through changes in the DGC and integrins. We found different sensitivity of the DGC and integrin to isoproterenol subcutaneous administration. Immunofluorescent staining revealed that dystrophin is the most sensitive among the structures connecting the actin in the cardiomyocyte cytoskeleton and the extracellular matrix. The sarcomeric actin dissolution occurred after the reduction or loss of dystrophin. Subsequently, after lysis of myofilaments, gamma-sarcoglycan, beta-dystroglycan, beta 1-integrin, and laminin alpha-2 expressions were reduced followed by their breakdown, as epiphenomena of the myocytolytic process. In conclusion, administration of isoproterenol to rats results in primary loss of dystrophin, the most sensitive among the structural proteins that form the DGC that connects the extracellular matrix and the cytoskeleton in cardiomyocyte. These changes, related to ischaemic injury, explain the severe alterations in the structural integrity of the sarcolemma of cardiomyocytes and hence severe and irreversible injury induced by isoproterenol.
Resumo:
The infection with Trypanosoma cruzi leads to a vigorous and apparently uncontrolled inflammatory response in the heart. Although the parasites trigger specific immune response, the infection is not completely cleared out, a phenomenon that in other parasitic infections has been attributed to CD4(+)CD25(+) T cells (Tregs). Then, we examined the role of natural Tregs and its signaling through CD25 and GITR in the resistance against infection with T. cruzi. Mice were treated with mAb against CD25 and GITR and the parasitemia, mortality and heart pathology analyzed. First, we demonstrated that CD4(+)CD25(+)GITR(+)Foxp3(+) T cells migrate to the heart of infected mice. The treatment with anti-CD25 or anti-GITR resulted in increased mortality of these infected animals. Moreover, the treatment with anti-GITR enhanced the myocarditis, with increased migration of CD4(+), CD8(+), and CCR5(+) leukocytes, TNF-alpha production, and tissue parasitism, although it did not change the systemic nitric oxide synthesis. These data showed a limited role for CD25 signaling in controlling the inflammatory response during this protozoan infection. Also, the data suggested that signaling through GITR is determinant to control of the heart inflammation, parasite replication, and host resistance against the infection. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Background: Twenty-three patients (median age 23 months) who underwent Fallot`s tetralogy repair were investigated prospectively to detect a possible association between histopathologic myocardial remodeling and echocardiographic findings of systolic or diastolic ventricular dysfunction. Methods: Intraoperatively resected infundibular bands and subendocardial biopsy samples from the right ventricle (RV) and left ventricle were obtained for histopathologic evaluation. Tissue Doppler echocardiographic interrogation of the ventricles was performed before surgery and in the postoperative period. Results: Histopathologic data revealed hypertrophy of the RV cardiomyocytes and increased interstitial collagen in both ventricles. Mean values of RV isovolumic acceleration decreased significantly at the third evaluation compared with the preoperative values (P = .006). RV myocardial fibrosis greater than 8.3% was associated with a probability of altered E` of at least 0.7 (odds ratio = 2.31). Conclusion: Preoperative histologic myocardial remodeling influenced the postoperative RV function in this group of patients with late repair. Further studies are necessary to evaluate the myocardium in younger patients and to define its influence in the long-term follow-up. (J Am Soc Echocardiogr 2010;23:912-8.)
Resumo:
PD-1 and PD-L1 can be involved in tumor escape, and little is known about the role of these molecules in oral tumors or pre-malignant lesions. In the present study, we investigated the expression of PD-1 and PD-L1 in the blood and lesion samples of patients with actinic cheilitis (AC) and oral squamous cell carcinoma (OSCC). Our results showed that lymphocytes from peripheral blood and tissue samples exhibited high expression of PD-1 in both groups analyzed. Patients with AC presented higher percentage as well as the absolute numbers of CD4(+)PD-1(+) and CD8(+)PD-1(+) lymphocytes in peripheral blood mononuclear cells (PBMC) than healthy individuals, while patients with OSCC presented an increased frequency of CD8(+)PD1(+) in PBMC when compared with controls. On the other hand, increased frequency of CD4(+) and CD8(+) T cells expressing PD-1(+) accumulate in samples from OSCC, and the expression of PD-L1 was intense in OSCC and moderate in AC lesion sites. Lower levels of IFN-gamma and higher levels of TGF-beta were detected in OSCC samples. Our data demonstrate that PD-1 and PD-L1 molecules are present in blood and samples of AC and OSCC patients. Further studies are required to understand the significance of PD-1 and PD-L1 in oral tumors microenvironment.
Resumo:
Trypanosoma cruzi infection causes intense myocarditis, leading to cardiomyopathy and severe cardiac dysfunction. Protective adaptive immunity depends on balanced signaling through a T cell receptor and coreceptors expressed on the T cell surface. Such coreceptors can trigger stimulatory or inhibitory signals after binding to their ligands in antigen-presenting cells (APC). T. cruzi modulates the expression of coreceptors in lymphocytes after infection. Deregulated inflammation may be due to unbalanced expression of these molecules. Programmed death cell receptor 1 (PD-1) is a negative T cell coreceptor that has been associated with T cell anergy or exhaustion and persistent intracellular infections. We aimed to study the role of PD-1 during T. cruzi-induced acute myocarditis in mice. Cytometry assays showed that PD-1 and its ligands are strongly upregulated in lymphocytes and APC in response to T. cruzi infection in vivo and in vitro. Lymphocytes infiltrating the myocardium exhibited high levels of expression of these molecules. An increased cardiac inflammatory response was found in mice treated with blocking antibodies against PD-1, PD-L1, and to a lesser extent, PD-L2, compared to that found in mice treated with rat IgG. Similar results in PD-1(-/-) mice were obtained. Moreover, the PD-1 blockade/deficiency led to reduced parasitemia and tissue parasitism but increased mortality. These results suggest the participation of a PD-1 signaling pathway in the control of acute myocarditis induced by T. cruzi and provide additional insight into the regulatory mechanisms in the pathogenesis of Chagas` disease.
Resumo:
Prior to deforestation, So Paulo State had 79,000 km(2) covered by Cerrado (Brazilian savanna) physiognomies, but today less than 8.5% of this biodiversity hotspot remains, mostly in private lands. The global demand for agricultural goods has imposed strong pressure on natural areas, and the economic decisions of agribusiness managers are crucial to the fate of Cerrado domain remaining areas (CDRA) in Brazil. Our aim was to investigate the effectiveness of Brazilian private protected areas policy, and to propose a feasible alternative to promote CDRA protection. This article assessed the main agribusiness opportunity costs for natural areas preservation: the land use profitability and the arable land price. The CDRA percentage and the opportunity costs were estimated for 349 municipal districts of So Paulo State through secondary spatial data and profitability values of 38 main agricultural products. We found that Brazilian private protected areas policy fails to preserve CDRA, although the values of non-compliance fines were higher than average opportunity costs. The scenario with very restrictive laws on private protected areas and historical high interest rates allowed us to conceive a feasible cross compliance proposal to improve environmental and agricultural policies.
Resumo:
Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) is a standard assay in molecular medicine for gene expression analysis. Samples from incisional/needle biopsies, laser-microdissected tumor cells and other biologic sources, normally available in clinical cancer studies, generate very small amounts of RNA that are restrictive for expression analysis. As a consequence, an RNA amplification procedure is required to assess the gene expression levels of such sample types. The reproducibility and accuracy of relative gene expression data produced by sensitive methodology as qRT-PCR when cDNA converted from amplified (A) RNA is used as template has not yet been properly addressed. In this study, to properly evaluate this issue, we performed 1 round of linear RNA amplification in 2 breast cell lines (C5.2 and HB4a) and assessed the relative expression of 34 genes using cDNA converted from both nonamplified (NA) and A RNA. Relative gene expression was obtained from beta actin or glyceraldehyde 3-phosphate dehydrogenase normalized data using different dilutions of cDNA, wherein the variability and fold-change differences in the expression of the 2 methods were compared. Our data showed that 1 round of linear RNA amplification, even with suboptimal-quality RNA, is appropriate to generate reproducible and high-fidelity qRT-PCR relative expression data that have similar confidence levels as those from NA samples. The use of cDNA that is converted from both A and NA RNA in a single qRT-PCR experiment clearly creates bias in relative gene expression data.