89 resultados para REGULATORY RNA
Resumo:
Type XVIII collagen is a component of basement membranes, and expressed prominently in the eye, blood vessels, liver, and the central nervous system. Homozygous mutations in COL18A1 lead to Knobloch Syndrome, characterized by ocular defects and occipital encephalocele. However, relatively little has been described on the role of type XVIII collagen in development, and nothing is known about the regulation of its tissue-specific expression pattern. We have used zebrafish transgenesis to identify and characterize cis-regulatory sequences controlling expression of the human gene. Candidate enhancers were selected from non-coding sequence associated with COL18A1 based on sequence conservation among mammals. Although these displayed no overt conservation with orthologous zebrafish sequences, four regions nonetheless acted as tissue-specific transcriptional enhancers in the zebrafish embryo, and together recapitulated the major aspects of col18a1 expression. Additional post-hoc computational analysis on positive enhancer sequences revealed alignments between mammalian and teleost sequences, which we hypothesize predict the corresponding zebrafish enhancers; for one of these, we demonstrate functional overlap with the orthologous human enhancer sequence. Our results provide important insight into the biological function and regulation of COL18A1, and point to additional sequences that may contribute to complex diseases involving COL18A1. More generally, we show that combining functional data with targeted analyses for phylogenetic conservation can reveal conserved cis-regulatory elements in the large number of cases where computational alignment alone falls short. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Ribosomal RNA genes of most insects are interrupted by R1/R2 retrotransposons. The occurrence of R2 retrotransposons in sciarid genomes was studied by PCR and Southern blot hybridization in three Rhynchosciara species and in Trichosia pubescens. Amplification products with the expected size for non-truncated R2 elements were only obtained in Rhynchosciara americana. The rDNA in this species is located in the proximal end of the X mitotic chromosome but in the salivary gland is associated with all four polytene chromosomes. Approximately 50% of the salivary gland rDNA of most R. americana larval groups analysed had an insertion in the R2 site, while no evidence for the presence of R1 elements was found. In-situ hybridization results showed that rDNA repeat units containing R2 take part in the structure of the extrachromosomal rDNA. Also, rDNA resistance to Bal 31 digestion could be interpreted as evidence for nonlinear rDNA as part of the rDNA in the salivary gland. Insertions in the rDNA of three other sciarid species were not detected by Southern blot and in-situ hybridization, suggesting that rDNA retrotransposons are significantly under-represented in their genomes in comparison with R. americana. R2 elements apparently restricted to R. americana correlate with an increased amount of repetitive DNA in its genome in contrast to other Rhynchosciara species. The results obtained in this work together with previous results suggest that evolutionary changes in the genus Rhynchosciara occurred by differential genomic occupation not only of satellite DNA but possibly also of rDNA retrotransposons.
Resumo:
Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) is a standard assay in molecular medicine for gene expression analysis. Samples from incisional/needle biopsies, laser-microdissected tumor cells and other biologic sources, normally available in clinical cancer studies, generate very small amounts of RNA that are restrictive for expression analysis. As a consequence, an RNA amplification procedure is required to assess the gene expression levels of such sample types. The reproducibility and accuracy of relative gene expression data produced by sensitive methodology as qRT-PCR when cDNA converted from amplified (A) RNA is used as template has not yet been properly addressed. In this study, to properly evaluate this issue, we performed 1 round of linear RNA amplification in 2 breast cell lines (C5.2 and HB4a) and assessed the relative expression of 34 genes using cDNA converted from both nonamplified (NA) and A RNA. Relative gene expression was obtained from beta actin or glyceraldehyde 3-phosphate dehydrogenase normalized data using different dilutions of cDNA, wherein the variability and fold-change differences in the expression of the 2 methods were compared. Our data showed that 1 round of linear RNA amplification, even with suboptimal-quality RNA, is appropriate to generate reproducible and high-fidelity qRT-PCR relative expression data that have similar confidence levels as those from NA samples. The use of cDNA that is converted from both A and NA RNA in a single qRT-PCR experiment clearly creates bias in relative gene expression data.
Resumo:
The aim of this study was to identify molecular pathways involved in audiogenic seizures in the epilepsy-prone Wistar Audiogenic Rat (WAR). For this, we used a suppression-subtractive hybridization (SSH) library from the hippocampus of WARs coupled to microarray comparative gene expression analysis, followed by Northern blot validation of individual genes. We discovered that the levels of the non-protein coding (npc) RNA BC1 were significantly reduced in the hippocampus of WARs submitted to repeated audiogenic seizures (audiogenic kindling) when compared to Wistar resistant rats and to both naive WARs and Wistars. By quantitative in situ hybridization, we verified lower levels of BC1 RNA in the GD-hilus and significant signal ratio reduction in the stratum radiatum and stratum pyramidale of hippocampal CA3 subfield of audiogenic kindled animals. Functional results recently obtained in a BC1-/- mouse model and our current data are supportive of a potential disruption in signaling pathways, upstream of BC1, associated with the seizure susceptibility of WARs. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We used c-Fos immunoreactivity to estimate neuronal activation in hypothalamic feeding-regulatory areas of 3-month-old rats fed control or oil-enriched diets (soy or fish) since weaning. While no diet effect was observed in c-Fos immunoreactivity of 24-h fasted animals, the acute response to refeeding was modified by both hyperlipidic diets but with different patterns. Upon refeeding, control-diet rats had significantly increased c-Fos immunoreactivity only in the paraventricular hypothalamic nucleus (PVH, 142%). In soy-diet rats, refeeding with the soy diet increased c-Fos immunoreactivity in dorsomedial hypothalamic nucleus (DMH, 271%) and lateral hypothalamic area (LH, 303%). Refeeding fish-diet rats with the fish diet increased c-Fos immunoreactivity in PVH (161%), DMH (177%), VMH (81%), and ARC (127%). Compared to the fish-diet, c-Fos immunoreactivity was increased in LH by the soy-diet while it was decreased in ventromedial hypothalamic nucleus (VMH) and arcuate hypothalamic nucleus (ARC). Based on the known roles of the activated nuclei, it is suggested that, unlike the fish-diet, the soy-diet induced a potentially obesogenic profile, with high LH and low VMH/PVH activation after refeeding.
Resumo:
It is known that the circadian rhythm in hepatic phosphoenolpyruvate carboxykinase expression (a limiting catalytic step of gluconeogenesis) and hepatic glucose production is maintained by both daily oscillation in autonomic inputs to the liver and night feeding behavior. However, increased glycemia and reduced melatonin (Mel) levels have been recently shown to coexist in diabetic patients at the end of the night period. In parallel, pinealectomy (PINX) is known to cause glucose intolerance with increased basal glycemia exclusively at the end of the night. The mechanisms that underlie this metabolic feature are not completely understood. Here, we demonstrate that PINX rats show night-time hepatic insulin resistance characterized by reduced insulin-stimulated RAC-alpha serine/threonine-protein kinase phosphorylation and increased phosphoenolpyruvate carboxykinase expression. In addition, PINX rats display increased conversion of pyruvate into glucose at the end of the night. The regulatory mechanism suggests the participation of unfolded protein response (UPR), because PINX induces night-time increase in activating transcription factor 6 expression and prompts a circadian fashion of immunoglobulin heavy chain-binding protein, activating transcription factor 4, and CCAAT/enhancer-binding protein-homologous protein expression with Zenith values at the dark period. PINX also caused a night-time increase in Tribble 3 and regulatory-associated protein of mammalian target of rapamycin; both were reduced in liver of PINX rats treated with Mel. Treatment of PINX rats with 4-phenyl butyric acid, an inhibitor of UPR, restored night-time hepatic insulin sensitivity and abrogated gluconeogenesis in PINX rats. Altogether, the present data show that a circadian oscillation of UPR occurs in the liver due to the absence of Mel. The nocturnal UPR activation is related with night-time hepatic insulin resistance and increased gluconeogenesis in PINX rats. (Endocrinology 152: 1253-1263, 2011)
Resumo:
Burgi K, Cavalleri MT, Alves AS, Britto LRG, Antunes VR, Michelini LC. Tyrosine hydroxylase immunoreactivity as indicator of sympathetic activity: simultaneous evaluation in different tissues of hypertensive rats. Am J Physiol Regul Integr Comp Physiol 300: R264-R271, 2011. First published December 9, 2010; doi: 10.1152/ajpregu.00687.2009.-Vasomotor control by the sympathetic nervous system presents substantial heterogeneity within different tissues, providing appropriate homeostatic responses to maintain basal/stimulated cardiovascular function both at normal and pathological conditions. The availability of a reproducible technique for simultaneous measurement of sympathetic drive to different tissues is of great interest to uncover regional patterns of sympathetic nerve activity (SNA). We propose the association of tyrosine hydroxylase immunoreactivity (THir) with image analysis to quantify norepinephrine (NE) content within nerve terminals in arteries/arterioles as a good index for regional sympathetic outflow. THir was measured in fixed arterioles of kidney, heart, and skeletal muscle of WistarKyoto rats (WKY) and spontaneously hypertensive rats (SHR) (123 +/- 2 and 181 +/- 4 mmHg, 300 +/- 8 and 352 +/- 8 beats/min, respectively). There was a differential THir distribution in both groups: higher THir was observed in the kidney and skeletal muscle (similar to 3-4-fold vs. heart arterioles) of WKY; in SHR, THir was increased in the kidney and heart (2.4- and 5.3-fold vs. WKY, respectively) with no change in the skeletal muscle arterioles. Observed THir changes were confirmed by either: 1) determination of NE content (high-performance liquid chromatography) in fresh tissues (SHR vs. WKY): +34% and +17% in kidney and heart, respectively, with no change in the skeletal muscle; 2) direct recording of renal (RSNA) and lumbar SNA (LSNA) in anesthetized rats, showing increased RSNA but unchanged LSNA in SHR vs. WKY. THir in skeletal muscle arterioles, NE content in femoral artery, and LSNA were simultaneously reduced by exercise training in the WKY group. Results indicate that THir is a valuable technique to simultaneously evaluate regional patterns of sympathetic activity.
Resumo:
BACKGROUND: Ameloblastoma is a benign odontogenic tumor, exhibiting local invasiveness and high rate of recurrence. Metallothionein is a protein associated with tumorigenesis, serving as prognostic factor in different neoplasms. We are interested in mechanisms underlying ameloblastoma local invasiveness. Thus, we decided to analyze expression of metallothionein in this tumor. MATERIALS AND METHODS: An immunohistochemical evaluation of metallothionein in ameloblastoma was carried out. As control, we assessed expression of the same molecule in calcifying cystic odontogenic tumor (CCOT), a non-invasive odontogenic neoplasm with ameloblastomatous epithelium. RESULTS: We studied 12 cases of solid/multicystic ameloblastomas. Metallothionein was observed in all samples. This molecule was observed in columnar cells in the periphery and in central polyhedral cells. CCOT (four cases) also showed the presence of metallothionein. Morphometry of stained areas showed that expression of metallothionein in ameloblastoma was significantly higher compared to CCOT (P < 0.0001). CONCLUSIONS: This protein may have an impact on ameloblastoma behavior. Metallothionein would act as a zinc reservoir for important proteases related to ameloblastoma biology, such as MMPs. This protein could also display pro-mitotic and anti-apoptotic features in the tumor. J Oral Pathol Med (2011) 40: 516-519
Resumo:
Nandrolone is an anabolic-androgenic steroid (AAS) that is highly abused by individuals seeking enhanced physical strength or body appearance. Supraphysiological doses of this synthetic testosterone derivative have been associated with many physical and psychiatric adverse effects, particularly episodes of impulsiveness and overt aggressive behavior. As the neural mechanisms underlying AAS-induced behavioral disinhibition are unknown, we investigated the status of serotonergic system-related transcripts in several brain areas of mice receiving prolonged nandrolone administration. Male C57BL/6J mice received 15 mg/kg of nandrolone decanoate subcutaneously once daily for 28 days, and different sets of animals were used to investigate motor-related and emotion-related behaviors or 5-HT-related messenger RNA (mRNA) levels by real-time quantitative polymerase chain reaction. AAS-injected mice had increased body weight, were more active and displayed anxious-like behaviors in novel environments. They exhibited reduced immobility in the forced swim test, a higher probability of being aggressive and more readily attacked opponents. AAS treatment substantially reduced mRNA levels of most investigated postsynaptic 5-HT receptors in the amygdala and prefrontal cortex. Interestingly, the 5-HT(1B) mRNA level was further reduced in the hippocampus and hypothalamus. There was no alteration of 5-HT system transcript levels in the midbrain. In conclusion, high doses of AAS nandrolone in male mice recapitulate the behavioral disinhibition observed in abusers. Furthermore, these high doses downregulate 5-HT receptor mRNA levels in the amygdala and prefrontal cortex. Our combined findings suggest these areas as critical sites for AAS-induced effects and a possible role for the 5-HT(1B) receptor in the observed behavioral disinhibition.
Resumo:
Tumor necrosis factor-related apoptosis-inducing ligand-TNFSF10 (TRAIL), a member of the TNF-alpha family and a death receptor ligand, was shown to selectively kill tumor cells. Not surprisingly, TRAIL is downregulated in a variety of tumor cells, including BCR-ABL-positive leukemia. Although we know much about the molecular basis of TRAIL-mediated cell killing, the mechanism responsible for TRAIL inhibition in tumors remains elusive because (a) TRAIL can be regulated by retinoic acid (RA); (b) the tumor antigen preferentially expressed antigen of melanoma (PRAME) was shown to inhibit transcription of RA receptor target genes through the polycomb protein, enhancer of zeste homolog 2 (EZH2); and (c) we have found that TRAIL is inversely correlated with BCR-ABL in chronic myeloid leukemia (CML) patients. Thus, we decided to investigate the association of PRAME, EZH2 and TRAIL in BCR-ABL-positive leukemia. Here, we demonstrate that PRAME, but not EZH2, is upregulated in BCR-ABL cells and is associated with the progression of disease in CML patients. There is a positive correlation between PRAME and BCR-ABL and an inverse correlation between PRAME and TRAIL in these patients. Importantly, knocking down PRAME or EZH2 by RNA interference in a BCR-ABL-positive cell line restores TRAIL expression. Moreover, there is an enrichment of EZH2 binding on the promoter region of TRAIL in a CML cell line. This binding is lost after PRAME knockdown. Finally, knocking down PRAME or EZH2, and consequently induction of TRAIL expression, enhances Imatinib sensibility. Taken together, our data reveal a novel regulatory mechanism responsible for lowering TRAIL expression and provide the basis of alternative targets for combined therapeutic strategies for CML. Oncogene (2011) 30, 223-233; doi:10.1038/onc.2010.409; published online 13 September 2010
Resumo:
Toll-like receptors (TLRs) present in innate immune cells recognize pathogen molecular patterns and influence immunity to control the host-parasite interaction. The objective of this study was to characterize the involvement of TLR4 in the innate and adaptive immunity to Paracoccidioides brasiliensis, the most important primary fungal pathogen of Latin America. We compared the responses of C3H/HeJ mice, which are naturally defective in TLR4 signaling, with those of C3H/HePas mice, which express functional receptors, after in vitro and in vivo infection with P. brasiliensis. Unexpectedly, we verified that TLR4-defective macrophages infected in vitro with P. brasiliensis presented decreased fungal loads associated with impaired synthesis of nitric oxide, interleukin-12 (IL-12), and macrophage chemotactic protein 1 (MCP-1). After intratracheal infection with 1 million yeasts, TLR4-defective mice developed reduced fungal burdens and decreased levels of pulmonary nitric oxide, proinflammatory cytokines, and antibodies. TLR4-competent mice produced elevated levels of IL-12 and tumor necrosis factor alpha (TNF-alpha), besides cytokines of the Th17 pattern, indicating a proinflammatory role for TLR4 signaling. The more severe infection of TLR4-normal mice resulted in increased influx of activated macrophages and T cells to the lungs and progressive control of fungal burdens but impaired expansion of regulatory T cells (Treg cells). In contrast, TLR4-defective mice were not able to clear their diminished fungal burdens totally, a defect associated with deficient activation of T-cell immunity and enhanced development of Treg cells. These divergent patterns of immunity, however, resulted in equivalent mortality rates, indicating that control of elevated fungal growth mediated by vigorous inflammatory reactions is as deleterious to the hosts as low fungal loads inefficiently controlled by limited inflammatory reactions.
Resumo:
Introduction: Tim-3 is a Th1 lymphocytes membrane protein with inhibitory function. Its ligand, galectin-9, was recently identified and it is expressed in some lymphocyte subpopulation. In addition, endothelial cells and fibroblasts can also express galectin-9 according to the local cytokine milieu. Both molecules can act as important regulatory tools in the immune system. Aim: Evaluate the expression of these immunoregulatory molecules inside kidney allografts during acute rejection episodes. Methods: By using a quantitative polymerase chain reaction assay, we measured the levels of messenger RNA (mRNA) for galectin-9 and Tim-3 in 21 samples obtained at allograft nephrectomy. Five samples received the histological diagnosis of acute non-vascular rejection (ANVR), twelve of acute vascular rejection (AVR), and five of loss of non-immune cause (LNIC; as control). As cytolytic response markers we measured mRNA levels of granzyme B, interferon-gamma and perforin. The statistic analysis was performed using one way analysis of variance (ANOVA) and Pearson correlation. Results: The mean levels of Tim-3 mRNA expression were 13.99 +/- 6.99 for LNIC, 48.13 +/- 54.47 for RACNV and 238.63 +/- 333.14 for RAV (p = 0.004). For galectin-9, the mean values were 0.57 +/- 0.49 for LNIC, 0.66 +/- 0.36 for RACNV and 2.34 +/- 1.62 for RAV (p = 0.006). Furthermore, there was a positive correlation between both molecules (r = 0.526, p = 0.016). Also. granzyme B, perforin and interferon-gamma mRNA expression were different among the three groups. Conclusion: Messenger RNA level expressions of all the studied molecules were higher inside allografts with more severe rejection. Moreover, there was a positive correlation between galectin-9 and Tim-3 mRNA levels. The simultaneous expression of galectin-9 and Tim-3 may indicate an immunoregulatory function, during the ongoing cytotoxic response. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Ischemia reperfusion injury (IRI) is a potential contributor for the development of chronic allograft nephropathy. T cells are important mediators of injury, even in the absence of alloantigens. We performed a depletion of TCD4(+)CTLA4(+)Foxp3(+) cells with anti-CD25(PC61), a treatment with anti-GITR (DTA-1) and rat-IgG, followed by 45 min of ischemia and 24/72 h of reperfusion, and then analyzed blood urea, kidney histopathology and gene expression in kidneys by QReal Time PCR. After 24 h of reperfusion, depletion of TCD4(+)CTLA4(+)Foxp3(+) cells reached 30.3%(spleen) and 67.8%(lymph nodes). 72 h after reperfusion depletion reached 43.1%(spleen) and 90.22%(lymph nodes) and depleted animals presented with significantly poorer renal function, while DTA-1 (anti-GITR)-treated ones showed a significant protection, all compared to serum urea from control group (IgG: 150.10 +/- 50.04; PC61: 187.23 +/- 31.38; DTA-1: 64.53 +/- 25.65, mg/dL, p<0.05). These data were corroborated by histopathology. We observed an increase of HO-1 expression in animals treated with DTA-1 at 72 h of reperfusion with significant differences. Thus, our results suggest that PC61 (anti-CD25) mAb treatment is deleterious, while DTA-1 (anti-GITR) mAb treatment presents a protective role in the renal IRI, indicating that some regulatory populations of T cells might have a role in IRI. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The impact of ultraviolet (UV-C) photoproducts on apoptosis induction was investigated in growth arrested (confluent) and proliferating human primary fibroblasts. Confluent fibroblasts were more resistant to UV-C-induced apoptosis than proliferating cells, and this was observed for normal human cells and for cells from patients with Cockayne and trichothiodystrophy syndromes, deficient in transcription coupled repair. This resistance was sustained for at least seven days and was not due to DNA repair efficiency, as the removal of CPDs in the genome was similar under both growth conditions. There was no correlation between reduced apoptosis and RNA synthesis recovery. Following UV-C treatment, proliferating and confluent fibroblasts showed a similar level of RNA synthesis inhibition and recovery from transcription blockage. These results support the hypothesis that the decrease of DNA replication, in growth arrested cells, protects cell from UV-C-induced apoptosis, even in the presence of DNA lesions. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Background and Objective: This study evaluated the prevalence and the molecular diversity of Archaea in the subgingival biofilm samples of subjects with peri-implantitis. Material and Methods: Fifty subjects were assigned into two groups: Control (n = 25), consisting of subjects with healthy implants; and Test (n = 25), consisting of subjects with peri-implantitis sites, as well as a healthy implant. In the Test group, subgingival biofilm samples were taken from the deepest sites of the diseased implant. In both groups, subgingival biofilm was collected from one site with a healthy implant and from one site with a periodontally healthy tooth. DNA was extracted and the 16S ribosomal RNA gene was amplified with universal primer pairs for Archaea. Amplified genes were cloned and sequenced, and the phylotypes were identified by comparison with known 16S ribosomal RNA sequences. Results: In the Control group, Archaea were detected in two and three sites of the implant and the tooth, respectively. In the Test group, Archaea were detected in 12, 4 and 2 sites of diseased implants, healthy implants and teeth, respectively. Diseased implants presented a significantly higher prevalence of Archaea in comparison with healthy implants and natural teeth, irrespective of group. Over 90% of the clone libraries were formed by Methanobrevibacter oralis, which was detected in both groups. Methanobacterium congelense/curvum was detected in four subjects from the Test group and in two subjects from the Control group. Conclusion: Although M. oralis was the main species of Archaea associated with both healthy and diseased implant sites, the data indicated an increased prevalence of Archaea in peri-implantitis sites, and their role in pathogenesis should be further investigated.