89 resultados para Prediction error method
Resumo:
The objective of this work was to develop and validate a rapid Reversed-Phase High-Performance Liquid Chromatography method for the quantification of 3,5,3 '-triiodothyroacetic acid (TRIAC) in nanoparticles delivery system prepared in different polymeric matrices. Special attention was given to developing a reliable reproductive technique for the pretreatment of the samples. Chromatographic runs were performed on an Agilent 1200 Series HPLC with a RP Phenomenex (R) Gemini C18 (150 x 4, 6 mm i.d., 5 mu m) column using acetonitrile and triethylamine buffer 0.1% (TEA) (40 : 60 v/v) as a mobile phase in an isocratic elution, pH 5.6 at a flow rate of 1 ml min(-1). TRIAC was detected at a wavelength of 220 nm. The injection volume was 20 mu l and the column temperature was maintained at 35 degrees C. The validation characteristics included accuracy, precision, specificity, linearity, recovery, and robustness. The standard curve was found to have a linear relationship (r(2) - 0.9996) over the analytical range of 5-100 mu g ml(-1) . The detection and quantitation limits were 1.3 and 3.8 mu g ml(-1), respectively. The recovery and loaded TRIAC in colloidal system delivery was nearly 100% and 98%, respectively. The method was successfully applied in polycaprolactone, polyhydroxybutyrate, and polymethylmethacrylate nanoparticles.
Resumo:
The parallel mutation-selection evolutionary dynamics, in which mutation and replication are independent events, is solved exactly in the case that the Malthusian fitnesses associated to the genomes are described by the random energy model (REM) and by a ferromagnetic version of the REM. The solution method uses the mapping of the evolutionary dynamics into a quantum Ising chain in a transverse field and the Suzuki-Trotter formalism to calculate the transition probabilities between configurations at different times. We find that in the case of the REM landscape the dynamics can exhibit three distinct regimes: pure diffusion or stasis for short times, depending on the fitness of the initial configuration, and a spin-glass regime for large times. The dynamic transition between these dynamical regimes is marked by discontinuities in the mean-fitness as well as in the overlap with the initial reference sequence. The relaxation to equilibrium is described by an inverse time decay. In the ferromagnetic REM, we find in addition to these three regimes, a ferromagnetic regime where the overlap and the mean-fitness are frozen. In this case, the system relaxes to equilibrium in a finite time. The relevance of our results to information processing aspects of evolution is discussed.
Resumo:
In this work the time resolved thermal lens method is combined with interferometric technique, the thermal relaxation calorimetry, photoluminescence and lifetime measurements to determine the thermo physical properties of Nd(2)O(3) doped sodium zincborate glass as a function of temperature up to the glass transition region. Thermal diffusivity, thermal conductivity, fluorescence quantum efficiency, linear thermal expansion coefficient and thermal coefficient of electronic polarizability were determined. In conclusion, the results showed the ability of thermal lens and interferometric methods to perform measurements very close to the phase transition region. These techniques provide absolute values for the measured physical quantities and are advantageous when low scan rates are required. (c) 2008 Optical Society of America
Resumo:
This paper describes a new and simple method to determine the molecular weight of proteins in dilute solution, with an error smaller than similar to 10%, by using the experimental data of a single small-angle X-ray scattering (SAXS) curve measured on a relative scale. This procedure does not require the measurement of SAXS intensity on an absolute scale and does not involve a comparison with another SAXS curve determined from a known standard protein. The proposed procedure can be applied to monodisperse systems of proteins in dilute solution, either in monomeric or multimeric state, and it has been successfully tested on SAXS data experimentally determined for proteins with known molecular weights. It is shown here that the molecular weights determined by this procedure deviate from the known values by less than 10% in each case and the average error for the test set of 21 proteins was 5.3%. Importantly, this method allows for an unambiguous determination of the multimeric state of proteins with known molecular weights.
Resumo:
The crystalline structure of transition-metals (TM) has been widely known for several decades, however, our knowledge on the atomic structure of TM clusters is still far from satisfactory, which compromises an atomistic understanding of the reactivity of TM clusters. For example, almost all density functional theory (DFT) calculations for TM clusters have been based on local (local density approximation-LDA) and semilocal (generalized gradient approximation-GGA) exchange-correlation functionals, however, it is well known that plain DFT fails to correct the self-interaction error, which affects the properties of several systems. To improve our basic understanding of the atomic and electronic properties of TM clusters, we report a DFT study within two nonlocal functionals, namely, the hybrid HSE (Heyd, Scuseria, and Ernzerhof) and GGA + U functionals, of the structural and electronic properties of the Co(13), Rh(13), and Hf(13) clusters. For Co(13) and Rh(13), we found that improved exchange-correlation functionals decrease the stability of open structures such as the hexagonal bilayer (HBL) and double simple-cubic (DSC) compared with the compact icosahedron (ICO) structure, however, DFT-GGA, DFT-GGA + U, and DFT-HSE yield very similar results for Hf(13). Thus, our results suggest that the DSC structure obtained by several plain DFT calculations for Rh(13) can be improved by the use of improved functionals. Using the sd hybridization analysis, we found that a strong hybridization favors compact structures, and hence, a correct description of the sd hybridization is crucial for the relative energy stability. For example, the sd hybridization decreases for HBL and DSC and increases for ICO in the case of Co(13) and Rh(13), while for Hf(13), the sd hybridization decreases for all configurations, and hence, it does not affect the relative stability among open and compact configurations.
Resumo:
Background: Identifying local similarity between two or more sequences, or identifying repeats occurring at least twice in a sequence, is an essential part in the analysis of biological sequences and of their phylogenetic relationship. Finding such fragments while allowing for a certain number of insertions, deletions, and substitutions, is however known to be a computationally expensive task, and consequently exact methods can usually not be applied in practice. Results: The filter TUIUIU that we introduce in this paper provides a possible solution to this problem. It can be used as a preprocessing step to any multiple alignment or repeats inference method, eliminating a possibly large fraction of the input that is guaranteed not to contain any approximate repeat. It consists in the verification of several strong necessary conditions that can be checked in a fast way. We implemented three versions of the filter. The first is simply a straightforward extension to the case of multiple sequences of an application of conditions already existing in the literature. The second uses a stronger condition which, as our results show, enable to filter sensibly more with negligible (if any) additional time. The third version uses an additional condition and pushes the sensibility of the filter even further with a non negligible additional time in many circumstances; our experiments show that it is particularly useful with large error rates. The latter version was applied as a preprocessing of a multiple alignment tool, obtaining an overall time (filter plus alignment) on average 63 and at best 530 times smaller than before (direct alignment), with in most cases a better quality alignment. Conclusion: To the best of our knowledge, TUIUIU is the first filter designed for multiple repeats and for dealing with error rates greater than 10% of the repeats length.
Resumo:
Alternative splicing of gene transcripts greatly expands the functional capacity of the genome, and certain splice isoforms may indicate specific disease states such as cancer. Splice junction microarrays interrogate thousands of splice junctions, but data analysis is difficult and error prone because of the increased complexity compared to differential gene expression analysis. We present Rank Change Detection (RCD) as a method to identify differential splicing events based upon a straightforward probabilistic model comparing the over-or underrepresentation of two or more competing isoforms. RCD has advantages over commonly used methods because it is robust to false positive errors due to nonlinear trends in microarray measurements. Further, RCD does not depend on prior knowledge of splice isoforms, yet it takes advantage of the inherent structure of mutually exclusive junctions, and it is conceptually generalizable to other types of splicing arrays or RNA-Seq. RCD specifically identifies the biologically important cases when a splice junction becomes more or less prevalent compared to other mutually exclusive junctions. The example data is from different cell lines of glioblastoma tumors assayed with Agilent microarrays.
Resumo:
This paper describes methods for the direct determination of Cd and Pb in hair segments (c.a. 5 mm similar to 80 mu g) by solid sampling graphite furnace atomic absorption spectrometry, becoming possible longitudinal profiles in a single strand of hair. To distinguish endogenous and exogenous content. strands of hair were washed by using two different procedures: IAEA protocol (acetone + water + acetone) and the combination of IAEA protocol with HCl washing (acetone + water + acetone + 0.1 mol l(-1) HCl). The concentration of Cd and Pb increased from the root Until the tip of hair washed according to IAEA protocol. However, when the strand of hair was washed using the combination of IAEA protocol and 0.1 mol l(-1) HCl, Cd concentrations decreased in all segments, and Pb concentrations decreased drastically near to the root (5 to 12 mm) and was systematically higher ill the end. The proposed method showed to be useful to assess the temporal variation to Cd and Pb exposure and call be Used for toxicological and environmental investigations. The limits of detection were 2.8 ng g(-1) for Cd and 40 ng g(-1) for Pb. The characteristic masses based oil integrated absorbance were 2.4 pg for Cd and 22 pg for Pb.
Resumo:
Background: Mutations in TP53 are common events during carcinogenesis. In addition to gene mutations, several reports have focused on TP53 polymorphisms as risk factors for malignant disease. Many studies have highlighted that the status of the TP53 codon 72 polymorphism could influence cancer susceptibility. However, the results have been inconsistent and various methodological features can contribute to departures from Hardy-Weinberg equilibrium, a condition that may influence the disease risk estimates. The most widely accepted method of detecting genotyping error is to confirm genotypes by sequencing and/or via a separate method. Results: We developed two new genotyping methods for TP53 codon 72 polymorphism detection: Denaturing High Performance Liquid Chromatography (DHPLC) and Dot Blot hybridization. These methods were compared with Restriction Fragment Length Polymorphism (RFLP) using two different restriction enzymes. We observed high agreement among all methodologies assayed. Dot-blot hybridization and DHPLC results were more highly concordant with each other than when either of these methods was compared with RFLP. Conclusions: Although variations may occur, our results indicate that DHPLC and Dot Blot hybridization can be used as reliable screening methods for TP53 codon 72 polymorphism detection, especially in molecular epidemiologic studies, where high throughput methodologies are required.
Resumo:
Glycosylphosphatidylinositol (GPI) anchoring is a common, relevant posttranslational modification of eukaryotic surface proteins. Here, we developed a fast, simple, and highly sensitive (high attomole-low femtomole range) method that uses liquid chromatography-tandem mass spectrometry (LC-MS(n)) for the first large-scale analysis of GPI-anchored molecules (i.e., the GPIome) of a eukaryote, Trypanosoma cruzi, the etiologic agent of Chagas disease. Our genome-wise prediction analysis revealed that approximately 12% of T. cruzi genes possibly encode GPI-anchored proteins. By analyzing the GPIome of T. cruzi insect-dwelling epimastigote stage using LC-MS(n), we identified 90 GPI species, of which 79 were novel. Moreover, we determined that mucins coded by the T. cruzi small mucin-like gene (TcSMUG S) family are the major GPI-anchored proteins expressed on the epimastigote cell surface. TcSMUG S mucin mature sequences are short (56-85 amino acids) and highly O-glycosylated, and contain few proteolytic sites, therefore, less likely susceptible to proteases of the midgut of the insect vector. We propose that our approach could be used for the high throughput GPIomic analysis of other lower and higher eukaryotes. Molecular Systems Biology 7 April 2009; doi:10.1038/msb.2009.13
Resumo:
Southeastern Brazil has seen dramatic landscape modifications in recent decades, due to expansion of agriculture and urban areas; these changes have influenced the distribution and abundance of vertebrates. We developed predictive models of ecological and spatial distributions of capybaras (Hydrochoerus hydrochaeris) using ecological niche modeling. Most Occurrences of capybaras were in flat areas with water bodies Surrounded by sugarcane and pasture. More than 75% of the Piracicaba River basin was estimated as potentially habitable by capybara. The models had low omission error (2.3-3.4%), but higher commission error (91.0-98.5%); these ""model failures"" seem to be more related to local habitat characteristics than to spatial ones. The potential distribution of capybaras in the basin is associated with anthropogenic habitats, particularly with intensive land use for agriculture.
Resumo:
The metrological principles of neutron activation analysis are discussed. It has been demonstrated that this method can provide elemental amount of substance with values fully traceable to the SI. The method has been used by several laboratories worldwide in a number of CCQM key comparisons - interlaboratory comparison tests at the highest metrological level - supplying results equivalent to values from other methods for elemental or isotopic analysis in complex samples without the need to perform chemical destruction and dissolution of these samples. The CCOM accepted therefore in April 2007 the claim that neutron activation analysis should have the similar status as the methods originally listed by the CCOM as `primary methods of measurement`. Analytical characteristics and scope of application are given.
Resumo:
Laser induced breakdown spectrometry (LIBS) was applied for the determination of macro (P, K, Ca, Mg) and micronutrients (B, Cu, Fe, Mn and Zn) in sugar cane leaves, which is one of the most economically important crops in Brazil. Operational conditions were previously optimized by a neuro-genetic approach, by using a laser Nd:YAG at 1064 nm with 110 mJ per pulse focused on a pellet surface prepared with ground plant samples. Emission intensities were measured after 2.0 mu s delay time, with 4.5 mu s integration time gate and 25 accumulated laser pulses. Measurements of LIBS spectra were based on triplicate and each replicate consisted of an average of ten spectra collected in different sites (craters) of the pellet. Quantitative determinations were carried out by using univariate calibration and chemometric methods, such as PLSR and iPLS. The calibration models were obtained by using 26 laboratory samples and the validation was carried out by using 15 test samples. For comparative purpose, these samples were also microwave-assisted digested and further analyzed by ICP OES. In general, most results obtained by LIBS did not differ significantly from ICP OES data by applying a t-test at 95% confidence level. Both LIBS multivariate and univariate calibration methods produced similar results, except for Fe where better results were achieved by the multivariate approach. Repeatability precision varied from 0.7 to 15% and 1.3 to 20% from measurements obtained by multivariate and univariate calibration, respectively. It is demonstrated that LIBS is a powerful tool for analysis of pellets of plant materials for determination of macro and micronutrients by choosing calibration and validation samples with similar matrix composition.
Resumo:
Inductively coupled plasma optical emission spectrometers (ICP DES) allow fast simultaneous measurements of several spectral lines for multiple elements. The combination of signal intensities of two or more emission lines for each element may bring such advantages as improvement of the precision, the minimization of systematic errors caused by spectral interferences and matrix effects. In this work, signal intensities for several spectral lines were combined for the determination of Al, Cd, Co, Cr, Mn, Pb, and Zn in water. Afterwards, parameters for evaluation of the calibration model were calculated to select the combination of emission lines leading to the best accuracy (lowest values of PRESS-Predicted error sum of squares and RMSEP-Root means square error of prediction). Limits of detection (LOD) obtained using multiple lines were 7.1, 0.5, 4.4, 0.042, 3.3, 28 and 6.7 mu g L(-1) (n = 10) for Al, Cd. Co, Cr, Mn, Pb and Zn, respectively, in the presence of concomitants. On the other hand, the LOD established for the most intense emission line were 16. 0.7, 8.4, 0.074. 23, 26 and 9.6 mu g L(-1) (n = 10) for these same elements in the presence of concomitants. The accuracy of the developed procedure was demonstrated using water certified reference material. The use of multiple lines improved the sensitivity making feasible the determination of these analytes according to the target values required for the current environmental legislation for water samples and it was also demonstrated that measurements in multiple lines can also be employed as a tool to verify the accuracy of an analytical procedure in ICP DES. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background: Leptin-deficient mice (Lep(ob)/Lep(ob), also known as ob/ob) are of great importance for studies of obesity, diabetes and other correlated pathologies. Thus, generation of animals carrying the Lep(ob) gene mutation as well as additional genomic modifications has been used to associate genes with metabolic diseases. However, the infertility of Lep(ob)/Lep(ob) mice impairs this kind of breeding experiment. Objective: To propose a new method for production of Lep(ob)/Lep(ob) animals and Lep(ob)/Lep(ob)-derived animal models by restoring the fertility of Lep(ob)/Lep(ob) mice in a stable way through white adipose tissue transplantations. Methods: For this purpose, 1 g of peri-gonadal adipose tissue from lean donors was used in subcutaneous transplantations of Lep(ob)/Lep(ob) animals and a crossing strategy was established to generate Lep(ob)/Lep(ob)-derived mice. Results: The presented method reduced by four times the number of animals used to generate double transgenic models (from about 20 to 5 animals per double mutant produced) and minimized the number of genotyping steps (from 3 to 1 genotyping step, reducing the number of Lep gene genotyping assays from 83 to 6). Conclusion: The application of the adipose transplantation technique drastically improves both the production of Lep(ob)/Lep(ob) animals and the generation of Lep(ob)/Lep(ob)-derived animal models. International Journal of Obesity (2009) 33, 938-944; doi: 10.1038/ijo.2009.95; published online 16 June 2009