65 resultados para Multi-dimensional gas chromatography


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we studied the oxidation of the azo dye Disperse orange 3 (DO3) by hydrogen peroxide, catalyzed by 5,10,15, 20-tetrakis(4-N-methylpyridyl)porphyrin iron(III) chloride immobilized onto montmorillonite K10, FeP-K10. Results showed that the FeP-K10/H2O2 system is efficient for discoloration of the DO3 dye, especially at pH 3.0. The catalyst was shown to be relatively stable and could be recycled many times, leading to good yields. DO3 oxidation products were analyzed by gas chromatography and mass spectrometry, being 4-nitroaniline the main product. Tert-butylhydroperoxide and iodosylbenzene were also used as oxidants, giving rise to 4-nitroaniline as product too. The studied system is a good biomimetic model of oxidative enzymes, being a promising discoloring agent for azo dyes. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Brazil, sugarcane fields are often burned to facilitate manual harvesting, and this burning causes environmental pollution from the large amounts of soot released into the atmosphere. This material contains numerous organic compounds such as PAHs. In this study, the concentrations of PAHs in two particulate-matter fractions (PM(2.5) and PM(10)) in the city of Araraquara (SE Brazil, with around 200,000 inhabitants and surrounded by sugarcane plantations) were determined during the sugarcane harvest (HV) and non-harvest (NHV) seasons in 2008 and 2009. The sampling strategy included four campaigns, with 60 samples in the NHV season and 220 samples in the HV season. The PM(2.5) and PM(10) fractions were collected using a dichotomous sampler (10 L min(-1), 24 h) with Teflon (TM) filters. The filter sets were extracted (ultrasonic bath with hexane/acetone (1:1 v/v)) and analyzed by HPLC/Fluorescence. The median concentration for total PAHs (PM(2.5) in 2009) was 0.99 ng m(-3) (NHV) and 3.3 ng m(-3) (HV). In the HV season, the total concentration of carcinogenic PAHs (benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene) was 5 times higher than in the NHV season. B(a)P median concentrations were 0.017 ng m(-3) and 0.12 ng m(-3) for the NHV and HV seasons, respectively. The potential cancer risk associated with exposure through inhalation of these compounds was estimated based on the benzo[a]pyrene toxic equivalence (BaP(eq)), where the overall toxicity of a PAR mixture is defined by the concentration of each compound multiplied by its relative toxic equivalence factor (TEF). BaP(eq) median (2008 and 2009 years) ranged between 0.65 and 1.0 ng m(-3) and 1.2-1.4 ng m(-3) for the NHV and HV seasons, respectively. Considering that the maximum permissible BaPeq in ambient air is 1 ng m(-3), related to the increased carcinogenic risk, our data suggest that the level of human exposure to PAHs in cities surrounded by sugarcane crops where the burning process is used is cause for concern. (C) 2010 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many eukaryotic proteins are posttranslationally modified by the esterification of cysteine thiols to long-chain fatty acids. This modification, protein palmitoylation, is catalyzed by a large family of palmitoyl acyltransferases that share an Asp-His-His-Cys Cys-rich domain but differ in their subcellular localizations and substrate specificities. In Trypanosoma brucei, the flagellated protozoan parasite that causes African sleeping sickness, protein palmitoylation has been observed for a few proteins, but the extent and consequences of this modification are largely unknown. We undertook the present study to investigate T. brucei protein palmitoylation at both the enzyme and substrate levels. Treatment of parasites with an inhibitor of total protein palmitoylation caused potent growth inhibition, yet there was no effect on growth by the separate, selective inhibition of each of the 12 individual T. brucei palmitoyl acyltransferases. This suggested either that T. brucei evolved functional redundancy for the palmitoylation of essential palmitoyl proteins or that palmitoylation of some proteins is catalyzed by a noncanonical transferase. To identify the palmitoylated proteins in T. brucei, we performed acyl biotin exchange chemistry on parasite lysates, followed by streptavidin chromatography, two-dimensional liquid chromatography-tandem mass spectrometry protein identification, and QSpec statistical analysis. A total of 124 palmitoylated proteins were identified, with an estimated false discovery rate of 1.0%. This palmitoyl proteome includes all of the known palmitoyl proteins in procyclic-stage T. brucei as well as several proteins whose homologues are palmitoylated in other organisms. Their sequences demonstrate the variety of substrate motifs that support palmitoylation, and their identities illustrate the range of cellular processes affected by palmitoylation in these important pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Banana has been currently indicated as a good source of fructooligosaccharides (FOS), which are considered to be functional components of foods. However, significant differences in their amounts in bananas have been observed in the literature. This work aims to identify and quantify FOS during ripening in different banana cultivars belonging to the most common genomic groups cultivated in Brazil. Considering that these differences can be due to cultivar, stage of ripening, and the methodologies used for FOS analyses, sugar contents were analyzed by high performance anion exchange chromatography-pulsed amperometric detection (HPAEC-PAD) and gas chromatography-mass spectrometry (GC-MS). An initial screening of eight cultivars (Ouro, Nanicao, Prata, Maca, Mysore, Pacovan, Terra, and Figo) in a full-ripe stage showed that 1-kestose, the first member of the FOS series (amounts between 297 and 1600 mu g/g of DM), was accumulated in all of them. Nystose, the second member, was detected only in Prata cultivar. Five of the cultivars were analyzed during ripening, and a strong correlation could be established with a specific sucrose level (similar to 200 mg/g of DM), which seems to trigger the synthesis of 1-kestose (the low amounts of FOS, below the functional recommended dose, indicates that banana cannot be considered a good source of FOS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives The purpose of the present work was to characterize file pharmacological profile of different L. alba chemotypes and to correlate the obtained data to the presence of chemical constituents detected by phytochemical analysis. Methods Essential oils from each L. alba chemotype (LP1-LP7) were characterized by gas chromatography-mass spectrometry (GC-MS) and extracted non-volatile compounds were analysed by HPLC and GC-MS. The anticonvulsant actions of file extracted compounds were studied in pentylenetetrazole-induced clonic seizures in mice and then effect oil motor coordination was studied using the rota-rod test in rats. The synaptosomes and synaptic membranes of the rats were examined for the influence of LP3 chemotype extract oil GABA uptake and binding experiments. Key findings Behavioural parameters encompassed by the pentylenetetrazole test indicated that 80% ethanolic extracts of LP1, LP3 and LP6 L. alba chemotypes were more effective as anticonvulsant agents. Neurochemical assays using synaptosomes and synaptic membranes showed that L. alba LP3 chemotype 80% ethanolic extract inhibited GABA uptake and GABA binding ill a dose-dependent manner. HPLC analysis showed that LP1, LP3 and LP6 80% ethanolic extracts presented a similar profile of constituents, differing from those seen in LP2, LP4, LP5 and LP7 80% ethanolic extracts, which exhibited no anticonvulsant effect. GC-MS analysis indicated the Occurrence of phenylpropanoids in methanolic fractions obtained from LP1, LP3 and LP6 80% ethanolic extracts and also the accumulation of inositol and flavonoids in hydroalcoholic fractions. Conclusions Our results suggest that the anticonvulsant properties shown by L. alba might be correlated to the presence of it complex of non-volatile Substances (phenylpropanoids, flavonoids and/or inositols), and also to the volatile terpenoids (beta-myrcene, citral, limonene and carvone), which have been previously Validated as anticonvulsants.