73 resultados para Microstructure of titanium


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: The objective of this study was to verify the influence of test environment on the flexural strength of dental porcelains with distinct microstructures. Material and Methods: Disk-shaped specimens from three dental porcelains with distinct leucite content (VM: zero; CE: 12; NS: 22 vol%) were manufactured and tested for biaxial flexural strength in air and immersed in artificial saliva. The results were analyzed by means of two-way ANOVA and Tukey`s test (alpha = 0.05). Results: The flexural strength (MPa) obtained for ambient air and artificial saliva environments, respectively, were: 110.0 +/- 16.0 and 81.5 +/- 10.8 for VM; 51.9 +/- 4.0 and 42.0 +/- 4.7 for CE; 72.0 +/- 11.5 and 63.6 +/- 5.8 for NS. A numerical decrease in the mean flexural strength was observed for all groups when specimens were tested under artificial saliva; however, the difference was only statistically significant for VM. Conclusions: The results indicate that the effect of water immersion on the flexural strength of dental porcelains varies according to their leucite content, as only the material without leucite in its microstructure (VM) showed significant strength degradation when tested under water.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectives: This in vitro study assessed the effect of a 4% TiF4 varnish on demineralisation and remineralisation of sound enamel and artificial carious enamel lesions, respectively. Methods: Bovine sound and carious enamel (n = 110) were randomly allocated to each type of varnish: Duraphat (R))-D (NaF, 2.26%F, pH 4.5, Colgate-Brazil, n = 30), Duofluorid (R)-F (NaF, 2.71%F, pH 8.0, FGM-Brazil, n = 30), TiF4-T (2.45%F, pH 1.0, FGM-Brazil, n = 30) and no-fluoride-P (FGM-Brazil, pH 5.0, n = 20). For the formation of artificial enamel caries, half of the blocks were immersed in 32 mL buffer acetate solution (16 h), whereas the other half was maintained sound. The varnishes were applied onto the enamel surfaces. Thus, the samples were subjected to pH cycles (37 degrees C) for 7 days. The response variables tested were surface and cross-sectional hardness. Data were tested using Kruskal-Wallis test (p < 0.05). Results: All F varnishes significantly reduced demineralisation and increased remineralisation in comparison to placebo. The TiF4 did not significantly reduce the surface enamel softening when compared with the other F varnishes, but it decreased the loss of subsurface hardness to the same extent. In enamel blocks with previous artificial carious lesions, the TiF4 significantly improved the rehardening compared to the other varnishes up to 30 mu m depth. Conclusions: The TiF4 varnish was able to decrease the demineralisation and increase the remineralisation of previously sound and carious enamel, respectively. It was equally effective compared to NaF varnishes on reducing the demineralisation at subsurface, but it was more effective on improving the remineralisation at surface and subsurface. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the biomechanical and microscopic response of previously grafted bone to titanium implants. The lower incisors of 16 rabbits were surgically extracted, and bilateral perforations communicating with the remaining sockets were created distally. A socket/perforation defect on each mandible was chosen at random to be immediately filled with a xenogenic graft, whereas the contralateral perforation was left to heal naturally and served as a paired control. After 60 days, titanium implants were installed in the previously operated areas. After periods of 2 and 6 months, the animals were killed, and the force necessary to retrieve implants as well as the bone-implant contact (BIC) and bone mass (BM) were quantified and statistically compared by 2-way analysis of variance and Tukey`s test (alpha = .05). No significant differences in removal torque were observed, either by time or by treatment condition. Differences in BIC and BM between experimental and control groups were not statistically significant through the intervals studied (P < .05). The presence of a xenogenic graft did not influence the microscopic tissue response to titanium implants or fixation into newly formed or mature bone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: This study aimed at investigating the influence of the porous titanium (Ti) structure on the osteogenic cell behaviour. Materials and methods: Porous Ti discs were fabricated by the powder metallurgy process with the pore size typically between 50 and 400 mm and a porosity of 60%. Osteogenic cells obtained from human alveolar bone were cultured until subconfluence and subcultured on dense Ti (control) and porous Ti for periods of up to 17 days. Results: Cultures grown on porous Ti exhibited increased cell proliferation and total protein content, and lower levels of alkaline phosphatase (ALP) activity than on dense Ti. In general, gene expression of osteoblastic markers-runt-related transcription factor 2, collagen type I, alkaline phosphatase, bone morphogenetic protein-7, and osteocalcin was lower at day 7 and higher at day 17 in cultures grown on porous Ti compared with dense Ti, a finding consistent with the enhanced growth rate for such cultures. The amount of mineralized matrix was greater on porous Ti compared with the dense one. Conclusion: These results indicate that the porous Ti is an appropriate substrate for osteogenic cell adhesion, proliferation, and production of a mineralized matrix. Because of the three-dimensional environment it provides, porous Ti should be considered an advantageous substrate for promoting desirable implant surface-bone interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Despite wide clinical application, the efficacy of platelet-rich plasma (PRP) for repairing bone defects and enhancing osseointegration of metal implants is still subject of debate. This study aimed to evaluate the effects of a well-defined PRP-like mixture containing platelet-derived growth factor-BB, transforming growth factor (TGF)-beta 1, TGF-beta 2, albumin, fibronectin, and thrombospondin [growth factors (GFs) + proteins] on the development of the osteogenic phenotype on titanium (Ti) in vitro. Human alveolar bone-derived osteoblastic cells were subcultured on Ti discs and exposed during the first 7 days to osteogenic medium supplemented with GFs + proteins and to osteogenic medium alone thereafter up to 14 days. Control cultures were exposed to only osteogenic medium. Dose-response experiments were carried out using rat primary calvarial cells exposed to GFs + proteins and 1:10 or 1:100 dilutions of the mixture. Treated human-derived cell cultures exhibited a significantly higher number of cycling cells at days 1 and 4 and of total cells at days 4 and 7, significantly reduced alkaline phosphatase (ALP) activity at days 4, 7, and 10, and no Alizarin red-stained areas (calcium deposits) at day 14, indicating an impairment in osteoblast differentiation. Although the 1:10 and 1:100 dilutions of the mixture restored the proliferative activity of rat-derived osteogenic cells to control levels and promoted a significant increase in ALP activity at day 10 compared with GFs + proteins, mineralized nodule formation was only observed with the 1:100 dilution (similar to 50% of the control). These results showed that a PRP-like protein mixture inhibits development of the osteogenic phenotype in both human and rat osteoblastic cell cultures grown on Ti. (J Histochem Cytochem 57:265-276, 2009)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to evaluate the development of the osteoblastic phenotype in human alveolar bone-derived cells grown on collagen type I-coated titanium (Ti) surface (Col-Ti) obtained by plasma deposition acrylic acid grafting compared with machined Ti (M-Ti). Osteoblastic cells were cultured until subconfluence and subcultured on Col-Ti and M-Ti for periods of up to 21 days. Cultures grown on Col-Ti and M-Ti exhibited similar cell morphology. Cell adhesion, total protein content, and alkaline phosphatase (ALP) activity were not affected by Ti surface modification in all evaluated periods. Growth analyses indicated that there were significantly more cells in cultures grown on Col-Ti at day 3. Runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteoprotegerin (OPG) mRNA expression of cells subcultured on Col-Ti was higher, whereas collagen type I (COL) was lower compared with M-Ti. Ti surface modification neither affected the osteocalcin (OC), ALP and receptor activator of NF-kappa B ligand (RANKL) mRNA expression nor the calcium content extracted from mineralized matrix. These results demonstrated that Col-Ti favours cell growth during the proliferative phase (day 3) and osteoblastic differentiation, as demonstrated by changes in mRNA expression profile during the matrix mineralization phase (day 14), suggesting that this Ti surface modification may affect the processes of bone healing and remodelling. To cite this article:Assis AF, Beloti MM, Crippa GE, de Oliveira PT, Morra M, Rosa AL. Development of the osteoblastic phenotype in human alveolar bone-derived cells grown on a collagen type I-coated titanium surface.Clin. Oral Impl. Res. 20, 2009; 240-246.doi: 10.1111/j.1600-0501.2008.01641.x.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present study we characterized titanium (Ti) surfaces submitted to different treatments and evaluated the response of osteoblasts derived from human alveolar bone to these surfaces. Five different surfaces were evaluated: ground (G), ground and chemical etched (G1-HF for 60 s), sand blasted (SB-Al2O3 particles 65 pm), sand blasted and chemical etched (SLA1-HF for 60 s and SLA2-HF for 13 s). Surface morphology was evaluated under SEM and roughness parameters by contact scanning instrument. The presence of Al2O3 was detected by EDS and the amount calculated by digital analyses. Osteoblasts, were cultured on these surfaces and it was evaluated: cell adhesion, proliferation, and viability, alkaline phosphatase activity, total protein content, and matrix mineralization formation. Physical and chemical treatments produced very different surface morphologies. Al2O3 residues were detected on SB and SLA2 surfaces. Only matrix mineralization formation was affected by different surface treatments, being increased on rough surface (SLA1) and reduced on surface with high amount of Al2O3 residues (SB). On the basis of these findings, it is possible to conclude that high concentration of residual Al2O3 negatively interfere with the process of matrix mineralization formation in contact with Ti implant surfaces. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 87A: 588-597, 2008

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective. To evaluate the influence of shaft design on the shaping ability of 3 rotary nickel-titanium (NiTi) systems. Study design. Sixty curved mesial canals of mandibular molars were used. Specimens were scanned by spiral tomography before and after canal preparation using ProTaper, ProFile, and ProSystem GT rotary instruments. One-millimeter-thick slices were scanned from the apical end point to the pulp chamber. The cross-sectional images from the slices taken earlier and after canal preparation at the apical, coronal, and midroot levels were compared. Results. The mean working time was 137.22 +/- 5.15 s. Mean transportation, mean centering ratio, and percentage of area increase were 0.022 +/- 0.131 mm, 0.21 +/- 0.11, and 76.90 +/- 42.27%, respectively, with no statistical differences (P > .05). Conclusions. All instruments were able to shape curved mesial canals in mandibular molars to size 30 without significant errors. The differences in shaft designs seemed not to affect their shaping capabilities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study compared the vertical misfit of 3-unit implant-supported nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloy and commercially pure titanium (cpTi) frameworks after casting as 1 piece, after sectioning and laser welding, and after simulated porcelain firings. The results on the tightened side showed no statistically significant differences. On the opposite side, statistically significant differences were found for Co-Cr alloy (118.64 mu m [SD: 91.48] to 39.90 mu m [SD: 27.13]) and cpTi (118.56 mu m [51.35] to 27.87 mu m [12.71]) when comparing 1-piece to laser-welded frameworks. With both sides tightened, only Co-Cr alloy showed statistically significant differences after laser welding. Ni-Cr alloy showed the lowest misfit values, though the differences were not statistically significantly different. Simulated porcelain firings revealed no significant differences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Statement of problem. In vitro studies on the retentive strengths of various cements used to retain posts have reported conflicting results. Purpose. The purpose of this study was to compare the tensile strength of commercially pure titanium and type III cast gold-alloy posts and cores cemented with zinc phosphate or resin cement. Material and methods. Forty-two extracted human canines were endoclontically treated. The root preparations were accomplished using Largo reamers (10 mm in depth and 1.7 mm in diameter). Acrylic resin patterns for the posts and cores were made, and specimens were cast in commercially pure titanium and in type III gold alloy (n=7). Fourteen titanium cast posts and cores were submitted to surface treatment with Kroll acid solution and to scanning electron microscopy (SEM), before and after acid etching. The groups (n=7) were cemented with zinc phosphate cement or resin cement (Panavia F). Tensile strengths were measured in a universal testing machine at a crosshead speed of 0.5 mm/min. The results (Kgf) were statistically analyzed by 2-way ANCIVA (alpha=.05). Results. The 2-way ANOVA indicated that there were no significant differences among the groups tested. Retentive means for zinc phosphate and Panavia F cements were statistically similar. The bond strength was not Influenced by the alloy, the luting material, or the etching treatment. SEM analysis indicated that the etched surfaces were smoother than those that did not receive surface treatment, but this fact did not influence the results. Conclusions. Commercially pure titanium cast posts and cores cemented with zinc phosphate and resin cements demonstrated similar mean tensile retentive values. Retentive values were also similar to mean values recorded for cast gold-alloy posts and cores cemented with zinc phosphate cement and resin cements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: This study evaluated and compared in vitro the microstructure and mineral composition of permanent and deciduous teeth`s dental enamel. Methods: Sound third molars (n = 12) and second primary molars (n = 12) were selected and randomly assigned to the following groups, according to the analysis method performed (n = 4): Scanning electron microscopy (SEM), X-Ray diffraction (XRD) and Energy dispersive X-ray spectrometer (EDS). Qualitative and quantitative comparisons of the dental enamel were done. The microscopic findings were analyzed statistically by a nonparametric test (Kruskal-Wallis). The measurements of the prisms number and thickness were done in SEM photomicrographs. The relative amounts of calcium (Ca) and phosphorus (P) were determined by EDS investigation. Chemical phases present in both types of teeth were observed by the XRD analysis. Results: The mean thickness measurements observed in the deciduous teeth enamel was 1.14 mm and in the permanent teeth enamel was 2.58 mm. The mean rod head diameter in deciduous teeth was statistically similar to that of permanent teeth enamel, and a slightly decrease from the outer enamel surface to the region next to the enamel-dentine junction was assessed. The numerical density of enamel rods was higher in the deciduous teeth, mainly near EDJ, that showed statistically significant difference. The percentage of Ca and P was higher in the permanent teeth enamel. Conclusions: The primary enamel structure showed a lower level of Ca and P, thinner thickness and higher numerical density of rods. Microsc. Res. Tech. 73:572-577, 2010. (C) 2009 Wiley-Liss. Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The biocompatibility of commercially pure (cp) titanium stems from its chemical stability within an organism, due to a fine film of impermeable titanium oxide covering the metal surface, which guarantees its resistance to corrosion. Despite its biocompatible characteristic, this material does not promote the formation of a hydroxyapatite layer, therefore, many research groups have sought to alter the material`s surface, introducing modifications that might influence corrosion resistance. The electrochemical behavior of cp Ti, with hydroxyapatite coating and without hydroxyapatite coating, commonly used in implant materials, was investigated using an artificial saliva solution at 25 degrees C and pH=7.4. In the conditions of the study it was observed that the hydroxyapatite layer influences the properties of corrosion resistance. This study of the behavior of cp Ti with and without hydroxyapatite coating, in naturally aerated artificial saliva solution at 25 degrees C, was based on open circuit potential measurements and potentiodynamic polarization curves. At approximately 1x10(-6) A/cm(2) the potential for cp Ti with and without hydroxyapatite coating begins to increase at a faster rate, but at -74mV (SCE) for coated cp Ti and at 180mV (SCE) for uncoated cp Ti the increase in potential begins to slow. This behavior, characterized by a partial stabilization of current density, indicates that in those potential ranges a protective passive film is formed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of the present work was to evaluate the effects of 14 years of weathering exposition on the microstructure and mineral composition of cementitious roofing tiles, still in service, reinforced with fique fibres (Furcrae gender). The results show that tiles under weathering exposition presented higher water absorption and apparent void volume than tiles under laboratory exposition. The continuous hydration of cement and natural carbonation filled the smaller pores but contrarily the large pores remained in the porous fibre to matrix interface in the samples exposed to weathering. On the other hand, their microstructure presented lower air permeability than samples aged in the internal environment of the laboratory. Besides, in the weathering aged tiles takes place a more intensive hydration process as it was identified greater amount of hydrated phases than in the laboratory aged specimens. The present results contribute to understanding the consequences of tropical weathering on the fibre-cement degradation. (C) 2010 Elsevier Ltd. All rights reserved.