214 resultados para Maxwell equation
Resumo:
It is well known that striation spacing may be related to the crack growth rate, da/dN, through Paris equation, as well as the maximum and minimum loads under service loading conditions. These loads define the load ratio, R, and are considered impossible to be evaluated from the inter-spacing striations analysis. In this way, this study discusses the methodology proposed by Furukawa to evaluate the maximum and minimum loads based on the experimental fact that the relative height of a striation, H, and the striation spacing, s, are strongly influenced by the load ratio, R. Fatigue tests in C(T) specimens were conducted on SAE 7475-T7351 Al alloy plates at room temperature and the results showed a straightforward correlation between the parameters H, s, and R. Measurements of striation height, H, were performed using scanning electron microscopy and field emission gun (FEG) after sectioning the specimen at a large inclined angle to amplify the height of the striations. The results showed that for increasing R the values of H/s tend to increase. Striation height, striation spacing, and load ratio correlations were obtained, which allows one to estimate service loadings from fatigue fracture surface survey.
Resumo:
Uncertainties in damping estimates can significantly affect the dynamic response of a given flexible structure. A common practice in linear structural dynamics is to consider a linear viscous damping model as the major energy dissipation mechanism. However, it is well known that different forms of energy dissipation can affect the structure's dynamic response. The major goal of this paper is to address the effects of the turbulent frictional damping force, also known as drag force on the dynamic behavior of a typical flexible structure composed of a slender cantilever beam carrying a lumped-mass on the tip. First, the system's analytical equation is obtained and solved by employing a perturbation technique. The solution process considers variations of the drag force coefficient and its effects on the system's response. Then, experimental results are presented to demonstrate the effects of the nonlinear quadratic damping due to the turbulent frictional force on the system's dynamic response. In particular, the effects of the quadratic damping on the frequency-response and amplitude-response curves are investigated. Numerically simulated as well as experimental results indicate that variations on the drag force coefficient significantly alter the dynamics of the structure under investigation. Copyright (c) 2008 D. G. Silva and P. S. Varoto.
Resumo:
The purpose of the present theory is to improve Hypoplasticity, especially in relation to reloading processes. This is done by means of two hypoplastic equations (a classical equation along with a new one containing a so-called mnemonic tensor), a cone in stress space and a criterion defining loading, unloading and reloading. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The quasiharmonic approximation (QHA), in its simplest form also called the statically constrained (SC) QHA, has been shown to be a straightforward method to compute thermoelastic properties of crystals. Recently we showed that for noncubic solids SC-QHA calculations develop deviatoric thermal stresses at high temperatures. Relaxation of these stresses leads to a series of corrections to the free energy that may be taken to any desired order, up to self-consistency. Here we show how to correct the elastic constants obtained using the SC-QHA. We exemplify the procedure by correcting to first order the elastic constants of MgSiO(3) perovskite and MgSiO(3) postperovskite, the major phases of the Earth's lower mantle. We show that this first-order correction is quite satisfactory for obtaining the aggregated elastic averages of these minerals and their velocities in the lower mantle. This type of correction is also shown to be applicable to experimental measurements of elastic constants in situations where deviatoric stresses can develop, such as in diamond-anvil cells.
Resumo:
This work develops a method for solving ordinary differential equations, that is, initial-value problems, with solutions approximated by using Legendre's polynomials. An iterative procedure for the adjustment of the polynomial coefficients is developed, based on the genetic algorithm. This procedure is applied to several examples providing comparisons between its results and the best polynomial fitting when numerical solutions by the traditional Runge-Kutta or Adams methods are available. The resulting algorithm provides reliable solutions even if the numerical solutions are not available, that is, when the mass matrix is singular or the equation produces unstable running processes.
Resumo:
This paper deals with the long run average continuous control problem of piecewise deterministic Markov processes (PDMPs) taking values in a general Borel space and with compact action space depending on the state variable. The control variable acts on the jump rate and transition measure of the PDMP, and the running and boundary costs are assumed to be positive but not necessarily bounded. Our first main result is to obtain an optimality equation for the long run average cost in terms of a discrete-time optimality equation related to the embedded Markov chain given by the postjump location of the PDMP. Our second main result guarantees the existence of a feedback measurable selector for the discrete-time optimality equation by establishing a connection between this equation and an integro-differential equation. Our final main result is to obtain some sufficient conditions for the existence of a solution for a discrete-time optimality inequality and an ordinary optimal feedback control for the long run average cost using the so-called vanishing discount approach. Two examples are presented illustrating the possible applications of the results developed in the paper.
Resumo:
The design of a lateral line for drip irrigation requires accurate evaluation of head losses in not only the pipe but in the emitters as well. A procedure was developed to determine localized head losses within the emitters by the formulation of a mathematical model that accounts for the obstruction caused by the insertion point. These localized losses can be significant when compared with tire total head losses within the system due to the large number of emitters typically installed along the lateral line. Air experiment was carried out by altering flow characteristics to create Reynolds numbers (R) from 7,480 to 32,597 to provide turbulent flow and a maximum velocity of 2.0 m s(-1). The geometry of the emitter was determined by an optical projector and sensor An equation was formulated to facilitate the localized head loss calculation using the geometric characteristics of the emitter (emitter length, obstruction ratio, and contraction coefficient). The mathematical model was tested using laboratory measurements on four emitters. The local head loss was accurately estimated for the Uniram (difference of +13.6%) and Drip Net (difference of +7.7%) emitters, while appreciable deviations were found for the Twin Plus (-21.8%) and Tiran (+50%) emitters. The head loss estimated by the model was sensitive to the variations in the obstruction area of the emitter However, the variations in the local head loss did not result in significant variations in the maximum length of the lateral lines. In general, for all the analyzed emitters, a 50% increase in the local head loss for the emitters resulted in less than an 8% reduction in the maximum lateral length.
Resumo:
The relationship between companies is an important issue in the management of supply chains. Several aspects relating to the flow and exchange of information along the chain are considered as having a decisive influence on the success of this relationship. The main objective of this work was to structured and test models that link aspects of this nature with performance and the purchaser-supplier relationship in the supply chain. Aspects relevant to communication and the use do IT in relationships between companies were investigated. The importance of performance in this relationship was also investigated. The research were based on empirical data obtained by means of structural equation modeling. The results show that some aspects contribute in a significant way to the success of this relationship while others that, a priori, are considered important make no contribution.
Resumo:
In this paper we study the existence of global solutions for a class of abstract functional differential equation with nonlocal conditions. An application is considered.
Resumo:
Based on previous results obtained from observations and linear wave theory analysis, the hypothesis that large-scale patterns can generate extreme cold events in southeast South America through the propagation of remotely excited Rossby waves was already suggested. This work will confirm these findings and extend their analysis through a series of numerical experiments using a primitive equation model where waves are excited by a thermal forcing situated in positions chosen according to observed convection anomalies over the equatorial region. The basic state used for these experiments is a composite of austral winters with maximum and minimum frequency of occurrence of generalized frosts that can affect a large area known as the Wet Pampas located in the central and eastern part of Argentina. The results suggest that stationary Rossby waves may be one important mechanism linking anomalous tropical convection with the extreme cold events in the Wet Pampas. The combination of tropical convection and a specific basic state can generate the right environment to guide the Rossby waves trigged by the tropical forcing towards South America. Depending on the phase of the waves entering the South American continent, they can favour the advection of anomalous wind at low levels from the south carrying cold and dry air over the whole southern extreme of the continent, producing a generalized frost in the Wet Pampa region. On the other hand, when a basic state based on the composites of minimum frosts is used, an anomalous anticyclone over the southern part of the continent generates a circulation with a south-southeast wind which brings maritime air and therefore humidity over the Wet Pampas region, creating negative temperature anomalies only over the northeastern part of the region. Under these conditions even if frosts occur they would not be generalized, as observed for the other basic state with maximum frequency of occurrence of generalized frosts.
Resumo:
A new age-redshift test is proposed in order to constrain H(0) on the basis of the existence of old high-redshift galaxies (OHRGs). In the flat Lambda cold dark matter model, the value of H(0) is heavily dependent on the mass density parameter Omega(M) = 1- Omega(Lambda). Such a degeneracy can be broken through a joint analysis involving the OHRG and baryon acoustic oscillation signature. By assuming a galaxy incubation time, t(inc) = 0.8 +/- 0.4 Gyr, our joint analysis yields a value of H(0) = 71 +/- 4 km s(-1) Mpc(-1) (1 sigma) with the best-fit density parameter Omega(M) = 0.27 +/- 0.03. Such results are in good agreement with independent studies from the Hubble Space Telescope key project and recent estimates of the Wilkinson Microwave Anisotropy Probe, thereby suggesting that the combination of these two independent phenomena provides an interesting method to constrain the Hubble constant.
Resumo:
It is possible that a system composed of up, down, and strange quarks exists as the true ground state of nuclear matter at high densities and low temperatures. This exotic plasma, called strange quark matter (SQM), seems to be even more favorable energetically if quarks are in a superconducting state, the so-called color-flavor locked state. Here we present calculations made on the basis of the MIT bag model, considering the influence of finite temperature on the allowed parameters characterizing the system for stability of bulk SQM (the so-called stability windows) and also for strangelets, small lumps of SQM, both in the color-flavor locking scenario. We compare these results with the unpaired SQM and also briefly discuss some astrophysical implications of them. Also, the issue of the strangelet's electric charge is discussed. The effects of dynamical screening, though important for nonpaired SQM strangelets, are not relevant when considering pairing among all three flavors and colors of quarks.
Resumo:
The influence of a possible nonzero chemical potential mu on the nature of dark energy is investigated by assuming that the dark energy is a relativistic perfect simple fluid obeying the equation of state, p=omega rho (omega < 0, constant). The entropy condition, S >= 0, implies that the possible values of omega are heavily dependent on the magnitude, as well as on the sign of the chemical potential. For mu > 0, the omega parameter must be greater than -1 (vacuum is forbidden) while for mu < 0 not only the vacuum but even a phantomlike behavior (omega <-1) is allowed. In any case, the ratio between the chemical potential and temperature remains constant, that is, mu/T=mu(0)/T(0). Assuming that the dark energy constituents have either a bosonic or fermionic nature, the general form of the spectrum is also proposed. For bosons mu is always negative and the extended Wien's law allows only a dark component with omega <-1/2, which includes vacuum and the phantomlike cases. The same happens in the fermionic branch for mu < 0. However, fermionic particles with mu > 0 are permitted only if -1
Resumo:
A component of dark energy has been recently proposed to explain the current acceleration of the Universe. Unless some unknown symmetry in Nature prevents or suppresses it, such a field may interact with the pressureless component of dark matter, giving rise to the so-called models of coupled quintessence. In this paper we propose a new cosmological scenario where radiation and baryons are conserved, while the dark energy component is decaying into cold dark matter. The dilution of cold dark matter particles, attenuated with respect to the usual a(-3) scaling due to the interacting process, is characterized by a positive parameter epsilon, whereas the dark energy satisfies the equation of state p(x) = omega rho(x) (omega < 0). We carry out a joint statistical analysis involving recent observations from type Ia supernovae, baryon acoustic oscillation peak, and cosmic microwave background shift parameter to check the observational viability of the coupled quintessence scenario here proposed.
Resumo:
Context. The turbulent pumping effect corresponds to the transport of magnetic flux due to the presence of density and turbulence gradients in convectively unstable layers. In the induction equation it appears as an advective term and for this reason it is expected to be important in the solar and stellar dynamo processes. Aims. We explore the effects of turbulent pumping in a flux-dominated Babcock-Leighton solar dynamo model with a solar-like rotation law. Methods. As a first step, only vertical pumping has been considered through the inclusion of a radial diamagnetic term in the induction equation. In the second step, a latitudinal pumping term was included and then, a near-surface shear was included. Results. The results reveal the importance of the pumping mechanism in solving current limitations in mean field dynamo modeling, such as the storage of the magnetic flux and the latitudinal distribution of the sunspots. If a meridional flow is assumed to be present only in the upper part of the convective zone, it is the full turbulent pumping that regulates both the period of the solar cycle and the latitudinal distribution of the sunspot activity. In models that consider shear near the surface, a second shell of toroidal field is generated above r = 0.95 R(circle dot) at all latitudes. If the full pumping is also included, the polar toroidal fields are efficiently advected inwards, and the toroidal magnetic activity survives only at the observed latitudes near the equator. With regard to the parity of the magnetic field, only models that combine turbulent pumping with near-surface shear always converge to the dipolar parity. Conclusions. This result suggests that, under the Babcock-Leighton approach, the equartorward motion of the observed magnetic activity is governed by the latitudinal pumping of the toroidal magnetic field rather than by a large scale coherent meridional flow. Our results support the idea that the parity problem is related to the quadrupolar imprint of the meridional flow on the poloidal component of the magnetic field and the turbulent pumping positively contributes to wash out this imprint.