179 resultados para Irradiated seafood
Resumo:
The survey is aimed at critically reviewing information on the UVA-mediated oxidative reactions to cellular components with emphasis on DNA as the result of mostly photosensitized pathways. It appears clearly that UVA radiation is relatively much more efficient than UVB photons in inducing oxidative processes. The main UVA-induced oxidative degradation pathways of DNA are reported and discussed mechanistically. They are mostly rationalized in terms of a major contribution of singlet molecular oxygen ((1)O(2)) and to a lesser extent of hydroxyl radical ((center dot)OH), that in the latter case originates from Fenton-type reactions. This leads to the predominant formation of 8-oxo-7,8-dihydroguanine together with smaller amounts of oxidized pyrimidine bases and DNA strand breaks in UVA-irradiated cells.
Resumo:
Objective: The purpose of this study was to evaluate in vitro the Knoop microhardness (Knoop hardness number [KHN]) and the degree of conversion using FT-Raman spectroscopy of a light-cured microhybrid resin composite (Z350-3M-ESPE) Vita shade A3 photopolymerized with a halogen lamp or an argon ion laser. Background Data: Optimal polymerization of resin-based dental materials is important for longevity of restorations in dentistry. Materials and Methods: Thirty specimens were prepared and inserted into a disc-shaped polytetrafluoroethylene mold that was 2.0 mm thick and 3 mm in diameter. The specimens were divided into three groups (n = 10 each). Group 1 (G1) was light-cured for 20 sec with an Optilux 501 halogen light with an intensity of 1000 mW/cm(2). Group 2 (G2) was photopolymerized with an argon laser with a power of 150 mW for 10 sec, and group 3 (G3) was photopolymerized with an argon laser at 200 mW of power for 10 sec. All specimens were stored in distilled water for 24 h at 37 degrees C and kept in lightproof containers. For the KHN test five indentations were made and a depth of 100 mu m was maintained in each specimen. One hundred and fifty readings were obtained using a 25-g load for 45 sec. The degree of conversion values were measured by Raman spectroscopy. KHN and degree of conversion values were obtained on opposite sides of the irradiated surface. KHN and degree of conversion data were analyzed by one-way ANOVA and Tukey tests with statistical significance set at p < 0.05. Results: The results of KHN testing were G1 = 37.428 +/- 4.765; G2 = 23.588 +/- 6.269; and G3 = 21.652 +/- 4.393. The calculated degrees of conversion (DC%) were G1 = 48.57 +/- 2.11; G2 = 43.71 +/- 3.93; and G3 = 44.19 +/- 2.71. Conclusions: Polymerization with the halogen lamp ( G1) attained higher microhardness values than polymerization with the argon laser at power levels of 150 and 200 mW; there was no difference in hardness between the two argon laser groups. The results showed no statistically significant different degrees of conversion for the polymerization of composite samples with the two light sources tested.
Resumo:
Recent fears of terrorism have provoked an increase in delays and denials of transboundary shipments of radioisotopes. This represents a serious constraint to sterile insect technique (SIT) programs around the world as they rely on the use of ionizing radiation from radioisotopes for insect sterilization. To validate a novel X ray irradiator, a series of studies on Ceratitis capitata (Wiedemann) and Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae) were carried out, comparing the relative biological effectiveness (RBE) between X rays and traditional gamma radiation from (60)Co. Male C. capitata pupae and pupae of both sexes of A. fraterculus, both 24 - 48 h before adult emergence, were irradiated with doses ranging from 15 to 120 Gy and 10-70 Gy, respectively. Estimated mean doses of 91.2 Gy of X and 124.9 Gy of gamma radiation induced 99% sterility in C. capitata males, Irradiated A. fraterculus were 99% sterile at approximate to 40-60 Gy for both radiation treatments. Standard quality control parameters and mating indices were not significantly affected by the two types of radiation. The RBE did not differ significantly between the tested X and gamma radiation, and X rays are as biologically effective for SIT purposes as gamma rays are. This work confirms the suitability of this new generation of X ray irradiators for pest control programs that integrate the SIT.
Resumo:
An analytical procedure for multiple standard additions of arsenic species using sequential injection analysis (SIA) is proposed for their quantification in seafood extracts. SIA presented flexibility for generating multiple specie standards at the ng mL(-1) concentration level by adding different volumes of As(III), As(V), monomethylarsonic (MMA) and dimethylarsinic (DMA) to the sample. The mixed sample plus standard solutions were delivered from SIA to fill the HPLC injection loop. Subsequently, As species were separated by HPLC and analyzed by atomic fluorescence spectrometry (AFS). The proposed system comprised two independently controlled modules, with the HPLC loop acting as the intermediary device. The analytical frequency was enhanced by combining the actions of both modules. While the added sample was flowing through the chromatographic column towards the detection system, the SIA program started performing the standard additions to another sample. The proposed method was applied to spoiled seafood extracts. Detection limits based on 3 sigma for As(III), As(V), MMA and DMA were 0.023, 0.39, 0.45 and 1.0 ng mL(-1), respectively. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Aquatic humic substances (AHS) isolated from two characteristic seasons of the Negro river, winter and summer corresponding to floody and dry periods, were structurally characterized by (13)C nuclear magnetic ressonance. Subsequently, AHS aqueous solutions were irradiated with a polychromatic lamp (290-475 nm) and monitored by its total organic carbon (TOC) content, ultraviolet-visible (UV-vis) absorbance, fluorescence and Fourier transformed infrared spectroscopy (FTIR). As a result, a photobleaching upto 80% after irradiation of 48 h was observed. Conformational rearrangements and formation of low molecular complexity structures were formed during the irradiation, as deduced from the pH decrement and the fluorescence shifting to lower wavelengths. Additionally a significant mineralization with the formation Of CO(2), CO, and inorganic carbon compounds was registered, as assumed by TOC losses of up to 70%. The differences in photodegradation between samples expressed by photobleaching efficiency were enhanced in the summer sample and related to its elevated aromatic content. Aromatic structures are assumed to have high autosensitization capacity effects mediated by the free radical generation from quinone and phenolic moieties.
Resumo:
The solar driven photo-Fenton process for treating water containing phenol as a contaminant has been evaluated by means of pilot-scale experiments with a parabolic trough solar reactor (PTR). The effects of Fe(II) (0.04-1.0 mmol L(-1)), H(2)O(2) (7-270 mmol L(-1)), initial phenol concentration (100 and 500 mg C L(-1)), solar radiation, and operation mode (batch and fed-batch) on the process efficiency were investigated. More than 90% of the dissolved organic carbon (DOC) was removed within 3 hours of irradiation or less, a performance equivalent to that of artificially-irradiated reactors, indicating that solar light can be used either as an effective complementary or as an alternative source of photons for the photo-Fenton degradation process. A non-linear multivariable model based on a neural network was fit to the experimental results of batch-mode experiments in order to evaluate the relative importance of the process variables considered on the DOC removal over the reaction time. This included solar radiation, which is not a controlled variable. The observed behavior of the system in batch-mode was compared with fed-batch experiments carried out under similar conditions. The main contribution of the study consists of the results from experiments under different conditions and the discussion of the system behavior. Both constitute important information for the design and scale-up of solar radiation-based photodegradation processes.
Resumo:
The objective of this research was to examine how various factors in Icelandic cod fishing can influence the quality of the raw material, using traceability systems to link these factors, and how transfer that knowledge and techniques to the Brazilian seafood industry. Data were collected in 2007 and analysed, to find a functional relationship between various quality factors. The analysis, showed, that there is a correlation between the number of parasites in the fillets and location of the fishing ground. It also showed that fishing ground and volume in haul can influence gaping, and that fillet yield differs between fishing grounds. These conclusions could only be drawn because of the ability to trace the fish from catch and all the way through processing. Recommendations drawn from this research to the Brazilian Competent Authority are to revise the countries fisheries legislation in order to enable the implementation of a traceability system that could be used as a tool to improve the quality of the raw material. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Soybean is an important Brazilian agricultural commodity that contains a high concentration of isoflavones. Many studies showed that isoflavones are active in the prevention of many human diseases. However, the correct processing techniques used to prepare the soy foodstuffs are important to maintain the active forms. The objective of this study was to evaluate the effect of gamma irradiation on the isoflavone contents of the defatted soybean flour when compared with soybean molasses, a derivative from the soybean food production. After extracting phenolic compounds with methanol aqueous solution (80%), isoflavones were detected by reverse-phase high-performance liquid chromatography/diode-array detector. The radiation doses of 2 and 5 kGy presented a small effect on the isoflavones content of defatted soy flour. Samples irradiated at 50 kGy showed lower isoflavone contents. The observed reduction in the concentration of isoflavones-daidzein, glycitein and genistein-induced by gamma radiation in soy molasses was not significant in defatted soy flour, thus suggesting that isoflavones in defatted soy flour were not eliminated by gamma radiation at rates up to 50 kGy.
Resumo:
Frozen samples of mechanically deboned chicken meat (MDCM) with skin were irradiated with gamma radiation doses of 0.0 kGy (control) and 3 kGy at 2 different radiation dose rates: 0.32 kGy/h (3 kGy) and 4.04 kGy/h (3 kGy). Batches of irradiated and control samples were evaluated during 11 d of refrigerated (2 +/- 1 degrees C) storage for the following parameters: total psychrotrophic bacteria count, thiobarbituric acid reactive substances (TBARS), evaluation of objective color (L*, a*, and b*) and a sensory evaluation (irradiated odor, oxidized odor, pink and brown colors). No statistical difference (P > 0.05) was found amongst the TBARS values obtained for the MDCM samples irradiated with dose rates of 0.32 and 4.04 kGy/h. There was a significant increase (P < 0.05) in the psychrotrophic bacterial count as from the 7th day of refrigerated storage, for the MDCM samples irradiated at the dose rate of 4.04 kGy/h. With respect to the attribute of oxidized odor, the samples irradiated with a dose rate of 0.32 kGy/h showed a stronger intensity and were significantly different (P < 0.05) from the sample irradiated with a dose rate of 4.04 kGy/h on days 0 and 2 of refrigerated storage. Irradiation with a dose rate of 4.04 kGy/h (3 kGy) was shown to be the best condition for the processing of MDCM according to the evaluation of all the variables, under the conditions of this study. Practical Application The results obtained for the application of different dose rates of ionizing radiation to mechanically deboned chicken meat will provide the food industry with information concerning the definition of the best processing conditions to maximize the sensory and food quality.
Resumo:
The aim of this study was to evaluate the gamma radiation effects on green tea odor volatiles in green tea at doses of 0, 5, 10, 15 and 20 kGy. The volatile organic compounds were extracted by hydrodistillation and analyzed by GC/MS. The green tea had a large influence on radiation effects, increasing the identified volatiles in relation to control samples. The dose of 10 kGy was responsible to form the majority of new odor compounds following by 5 and 20 kGy. However, the dose of 5 kGy was the dose that degraded the majority of volatiles in non-irradiated samples, following by 20 kGy. The dose of 15 kGy showed has no effect on odor volatiles. The gamma radiation, at dose up to 20 kGy, showed statistically no difference between irradiated and non irradiated green tea on odors compounds. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The presence of Vibrio parahaemolyticus in 123 oyster samples collected from an estuary on the southern coast of Sao Paulo state, Brazil, was investigated. Of the 123 samples, 99.2% were positive with densities ranging from <3 to 10(5) most probable number (MPN)/g. Densities correlated significantly with water temperature (r = 0.48; P < 0.001) but not with salinity (r = -0.09; P = 0.34). The effect of harvest site on counts was not significant (P > 0.05). These data provide information for the assessment of exposure of V. parahaemolyticus in oysters at harvest.
Resumo:
In order to protect food from pathogenic microorganisms as well as increase its shelf-life, while keeping sensorial properties (e.g., odor and taste), which are important properties required by spice buyers, it is necessary to analyze volatile formation from irradiation of medicinal and food herbs. Possible changes in the odor of these herbs are evaluated by characterizing different radiation doses and effects on sensorial properties, in order to allow better application of the irradiation technology. The aim of the present study was to analyze volatile formation on cinnamon (Laurus cinnamomum) samples after gamma irradiation. These samples were irradiated into plastic packages using a (60)Co facility. Radiation doses applied were 0, 5, 10, 15, 20 and 25 kGy. For the analysis of the samples, solid-phase microextraction (SPME) was applied, while for the analysis of volatile compounds, CG/MS. Spice irradiation showed the highest decrease in volatile compounds. For L. cinnamomum, the irradiation decreased volatile compounds by nearly 56% and 89.5%, respectively, comparing to volatile from a sample which had not been previously irradiated. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
Resumo:
This study investigated the consumer attitude to food irradiation in Sao Paulo, Brazil, through a qualitative research perspective. Three focus groups were conducted with 30 consumers, responsible for food choices and purchases. Both irradiated and nonirradiated food samples were served in the sessions to motivate the discussion and elicit the participants knowledge, opinions, feelings and concerns towards the irradiation process. Reactions were similar among the groups and differences between the irradiated and the nonirradiated samples were hardly perceived. When provided with positive information about irradiation and its benefits to foods and human health, many people still remained suspicious about the safety of the technology. Risk perception seemed to be related to unease and lack of knowledge about nuclear power and its non-defense use. Participants claimed for more transparency in communication about risks and benefits of irradiated foods to the human health, especially with respect to the continued consumption. Industrial relevance: Irradiation is an emerging food processing technology, which has been gaining interest by food technologists, producers and manufacturers all over the world in the last decades. Irradiation is suitable for disinfestation, microorganism load reduction or sterilization, assuring the safety, as well as having benefits in the shelf-life of foodstuffs. Food irradiation is approved in many countries and its use in food processing is endorsed by several reputed authorities, such as FAD and USDA. Despite the approval and recommendation, this technology still remains underutilized not only in Brazil, but also in other countries. The main reason appears to be the consumer concerns and doubts about the use of radiations in food processing. To develop communication strategies in promotion of irradiated foods it is necessary to investigate consumer attitudes, knowledge. opinions, as well as fears, with respect to the use of radiation in food processing. It is well-known that consumer views on technology may vary from a culture to another. So, findings from consumer research in a country may certainly not reflect the consumer views in other countries. In this sense, Brazilian studies focused on consumer views on food irradiation are necessary to gain understanding on how the local market accepts the technology. Brazil is one of the most important food producers in the world and an emerging consumer market with a population of about 184 million people. Food irradiation is regulated in Brazil since 1973, but to date only a few food ingredients are subjected to irradiation. The wide use of irradiation in food processing would favor Brazilian producers in the quality and safety assurance of food products, both for the local market and for exports. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The effect of addition of rosemary and oregano extracts on the sensory quality of irradiated beef burger was investigated. Batches of beef burgers were prepared with 400 ppm of rosemary or oregano extract and a group prepared with 200 ppm of synthetic butyl-hydroxytoluene (BHT)/butyl-hydroxy-anisol (BHA) was used as a control. Half of each formulation was irradiated at the maximum dose allowed for frozen meat (7 kGy). Samples were kept under frozen conditions (-20 degrees C) during the whole storage period, including during irradiation. Two analyses were performed after 20 and 90 days to verify the influence of the addition of the different types of antioxidants and the effect of irradiation and storage time on the acceptance of the product. Thirty-three and thirty-four untrained panelists were invited to participate in the first and second test, respectively. A structured hedonic scale ranging from 1 to 9 points was used in both analyses. BHT/BHA formulation obtained the highest score (6.73) and regarding the natural antioxidants, oregano received better acceptance (6.36). Irradiated samples formulated with oregano received a lower score, 6.03 in the first test and 5.06 in the second one, compared to the non-irradiated sample (6.36 and 5.79). In the second test (90 days), the sample formulated with BHT/BHA and which was irradiated received a higher score (6.59) when compared to the non-irradiated one (5.85). In both tests, the irradiated samples formulated with rosemary extract obtained a better score compared to the non-irradiated one, the scores being 5.00-3.82 and 5.00-3.76 in the first and second test, respectively. Our results allowed us to conclude that the natural antioxidants, rosemary and oregano extracts, present a good alternative for replacing synthetic additives in food industries, and that the irradiation process, in some cases, may help to enhance the sensory quality of food. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Papain is a proteolytic enzyme that has been widely used as debridement agent for scars and wound healing treatment. However, papain presents low stability, which limits its use to extemporaneous or short shelf-life formulations. The purpose of this study was to entrap papain into a polymeric matrix in order to obtain a drug delivery system that could be used as medical device. Since these systems must be sterile, gamma radiation is an interesting option and presents advantages in relation to conventional agents: no radioactive residues are formed: the product can be sterilized inside the final packaging and has an excellent reliability. The normative reference for the establishment of the sterilizing dose determines 25 kGy as the inactivation dose for viable microorganisms. A silicone dispersion was selected to prepare membranes containing 2% (w/w) papain. Irradiated and non-irradiated membranes were simultaneously assessed in order to verify whether gamma radiation interferes with the drug-releasing profile. Results showed that irradiation does not affect significantly papain release and its activity. Therefore papain shows radioresistance in the irradiation conditions applied. In conclusion, gamma radiation can be easily used as sterilizing agent without affecting the papain release profile and its activity onto the biocompatible device is studied. (C) 2009 Elsevier Ltd. All rights reserved.