67 resultados para HPLC-MS
Resumo:
This study used for the first time LC-MS/MS for the analysis of mitragynine (MIT), a mu-opioid agonist with antinociceptive and antitussive properties, in rat plasma. Mitragynine and the internal standard (amitriptyline) were extracted from plasma with hexane-isoamyl alcohol and resolved on a Lichrospher (R) RP-SelectB column (9.80 and 12.90 min, respectively). The quantification limit was 0.2 ng/mL within a linear range of 0.2-1000 ng/mL The method was applied to quantify mitragynine in plasma samples of rats (n = 8 per sampling time) treated with a single oral dose of 20 mg/kg. The following pharmacokinetic parameters were obtained (mean): maximum plasma concentration: 424 ng/mL; time to reach maximum plasma concentration: 1.26 h; elimination half-life: 3.85 h, apparent total clearance: 6.35 L/h/kg, and apparent volume of distribution: 37.90 L/kg. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Analytical and bioanalytical methods of high-performance liquid chromatography with fluorescence detection (HPLC-FLD) were developed and validated for the determination of chloroaluminum phthalocyanine in different formulations of polymeric nanocapsules, plasma and livers of mice. Plasma and homogenized liver samples were extracted with ethyl acetate, and zinc phthalocyanine was used as internal standard. The results indicated that the methods were linear and selective for all matrices studied. Analysis of accuracy and precision showed adequate values, with variations lower than 10% in biological samples and lower than 2% in analytical samples. The recoveries were as high as 96% and 99% in the plasma and livers, respectively. The quantification limit of the analytical method was 1.12 ng/ml, and the limits of quantification of the bioanalytical method were 15 ng/ml and 75 ng/g for plasma and liver samples, respectively. The bioanalytical method developed was sensitive in the ranges of 15-100 ng/ml in plasma and 75-500 ng/g in liver samples and was applied to studies of biodistribution and pharmacokinetics of AlClPc. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
P>Background Congenital adrenal hyperplasia caused by classic 21-hydroxylase deficiency (21OHD) is an autosomal recessive disorder with a high prevalence of asymptomatic heterozygote carriers (HTZ) in the general population, making case detection desirable by routine methodology. HTZ for classic and nonclassic (NC) forms have basal and ACTH-stimulated values of 17-hydroxyprogesterone (17OHP) that fail to discriminate them from the general population. 21-Deoxycortisol (21DF), an 11-hydroxylated derivative of 17OHP, is an alternative approach to identify 21OHD HTZ. Objective To determine the discriminating value of basal and ACTH-stimulated serum levels of 21DF in comparison with 17OHP in a population of HTZ for 21OHD (n = 60), as well as in NC patients (n = 16) and in genotypically normal control subjects (CS, n = 30), using fourth generation tandem mass spectrometry after HPLC separation (LC-MS/MS). Results Basal 21DF levels were not different between HTZ and CS, but stimulated values were increased in the former and virtually nonresponsive in CS. Only 17 center dot 7% of the ACTH-stimulated 21DF levels overlapped with CS, when compared to 46 center dot 8% for 17OHP. For 100% specificity, the sensitivities achieved for ACTH-stimulated 21DF, 17OHP and the quotient [(21DF + 17OHP)/F] were 82 center dot 3%, 53 center dot 2% and 87%, using cut-offs of 40, 300 ng/dl and 46 (unitless), respectively. Similar to 17OHP, ACTH-stimulated 21DF levels did not overlap between HTZ and NC patients. A positive and highly significant correlation (r = 0 center dot 846; P < 0 center dot 001) was observed between 21DF and 17OHP pairs of values from NC and HTZ. Conclusion This study confirms the superiority of ACTH-stimulated 21DF, when compared to 17OHP, both measured by LC-MS/MS, in identifying carriers for 21OHD. Serum 21DF is a useful tool in genetic counselling to screen carriers among relatives in families with affected subjects, giving support to molecular results.
Resumo:
Objectives The purpose of the present work was to characterize file pharmacological profile of different L. alba chemotypes and to correlate the obtained data to the presence of chemical constituents detected by phytochemical analysis. Methods Essential oils from each L. alba chemotype (LP1-LP7) were characterized by gas chromatography-mass spectrometry (GC-MS) and extracted non-volatile compounds were analysed by HPLC and GC-MS. The anticonvulsant actions of file extracted compounds were studied in pentylenetetrazole-induced clonic seizures in mice and then effect oil motor coordination was studied using the rota-rod test in rats. The synaptosomes and synaptic membranes of the rats were examined for the influence of LP3 chemotype extract oil GABA uptake and binding experiments. Key findings Behavioural parameters encompassed by the pentylenetetrazole test indicated that 80% ethanolic extracts of LP1, LP3 and LP6 L. alba chemotypes were more effective as anticonvulsant agents. Neurochemical assays using synaptosomes and synaptic membranes showed that L. alba LP3 chemotype 80% ethanolic extract inhibited GABA uptake and GABA binding ill a dose-dependent manner. HPLC analysis showed that LP1, LP3 and LP6 80% ethanolic extracts presented a similar profile of constituents, differing from those seen in LP2, LP4, LP5 and LP7 80% ethanolic extracts, which exhibited no anticonvulsant effect. GC-MS analysis indicated the Occurrence of phenylpropanoids in methanolic fractions obtained from LP1, LP3 and LP6 80% ethanolic extracts and also the accumulation of inositol and flavonoids in hydroalcoholic fractions. Conclusions Our results suggest that the anticonvulsant properties shown by L. alba might be correlated to the presence of it complex of non-volatile Substances (phenylpropanoids, flavonoids and/or inositols), and also to the volatile terpenoids (beta-myrcene, citral, limonene and carvone), which have been previously Validated as anticonvulsants.
Resumo:
This article describes the enantioseleclive analysis of cyclophosphamide (CPA) in human plasma using LC-MS/MS. CPA enantiomers were extracted from plasma using a mixture of ethyl acetate and chloroform (75:25, v/v). The enantiomers were separated on a Chiralcel(R) OD-R column, with the mobile phase consisting of a mixture of acetonitrile and water (75:25, v/v) plus 0.2% formic acid. The protonaled ions and their respective product ions were monitored using two functions, 261 > 141 for CPA enantiomers and 189 > 104 for the internal standard (antipyrine). Recovery rates were higher than 95% and the quantification limit was 2.5-ng/ml plasma for both enantiomers. The coefficients of variation and the relative errors obtained for the validation of intra- and interassay precision and accuracy were less than 10%. The method was applied for the investigation of the enantioselective pharmacokinetics of CPA in a lupus nephritis patient treated with 1 g CPA infused over 2 h and in a breast cancer patient treated with 0.9 g infused over 1 h. No stereoselectivity in the pharmacokinetic parameters was observed for either patient. Clearance values of 2.63 and 2.93 l/h and of 3.36 and 3.61 l/h for (-)-(S) and (+)-(R)-CPA were obtained for the breast cancer and lupus nephritis patient., respectively. Chirality 21:383-389, 2009. (C) 2008 Wiley-Liss, Inc.
Resumo:
Labetalol is clinically available as a mixture of two racemates (four stereoisomers). The stereoisomer (R,R) has as main activity the beta(1)-antagonism and the stereoisomer (S,R) is highly selective for the alpha(1) adrenoceptor and is responsible for most of the alpha-blocker activity. In the present investigation, a method for the analysis of labetalol stereoisomers in human plasma was developed and applied to pharmacokinetic studies. Plasma samples (0.5 ml) were extracted with methyl tert-butyl ether at pH 9.5. The four labetalol stereoisomers were analyzed by LC-MS/MS on a Chirobiotic (R) V column using a mobile phase consisting of methanol, acetic acid, and diethylamine, with a recovery of more than 90% for all four. The quantitation limit was 0.5 ng/ml and linearity was observed at 250 ng/ml plasma for each stereoisomer. Studies of precision and accuracy presented coefficients of variation and percentage inaccuracy of less than 15%, indicating that the method is precise and accurate. The method was applied to the study of the kinetic disposition of labetalol over a period of 12 h after oral administration of a single 100 mg dose to a hypertensive pregnant woman. The clinical study revealed stereoselectivity in the pharmacokinetics of labetalol, with a lower plasma proportion for the active stereoisomers (R,R)-labetalol and (S,R)-labetalol. The stereoselectivity observed after oral administration is due to the hepatic metabolism and the first pass effect, with an AUC((R,R))/AUC((S,S)) ratio of 0.5. Chirality 21:738-744, 2009. (C) 2008 Wiley-Liss, Inc.
Resumo:
Quantitation of progesterone (P(4)) in biological fluids is often performed by radioimmunoassay (RIA), whereas liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) has been used much less often. Due to its autoconfirmatory nature, LC-MS/MS greatly minimizes false positives and interference. Herein we report and compare with RIA an optimized LC-MS/MS method for rapid, efficient, and cost-effective quantitation of P(4) in plasma of cattle with no sample derivatization. The quantitation of plasma P(4) released from three nonbiodegradable, commercial, intravaginal P(4)-releasing devices (IPRD) over 192 h in six ovariectomized cows was compared in a pairwise study as a test case. Both techniques showed similar P(4) kinetics (P > 0.05) whereas results of P(4) quantitation by RIA were consistently higher compared with LC-MS/MS (P < 0.05) due to interference and matrix effects. The LC-MS/MS method was validated according to the recommended analytical standards and displayed P(4) limits of detection (LOD) and quantitation (LOQ) of 0.08 and a 0.25 ng/mL, respectively. The high selective LC-MS/MS method proposed herein for P(4) quantitation eliminates the risks associated with radioactive handling; it also requires no sample derivatization, which is a common requirement for LC-MS/MS quantitation of steroid hormones. Its application to multisteroid assays is also viable, and it is envisaged that it may provide a gold standard technique for hormone quantitation in animal reproductive science studies. (C) 2011 Elsevier Inc. All rights reserved.