100 resultados para Groundwater flow, Well flow, Analytical solution, Unconfined flow, Imaginary error function


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A single reaction interface flow analysis (SIFA) system for the monitoring of mannitol in pharmaceutical formulations and human urine is presented. The developed approach takes advantage of the mannitol scavenger aptitude to inhibit the chemiluminescent reaction between luminol and myoglobin in the absence of H(2)O(2). The SIFA system facilitated the fully automation of the developed methodology, allowing the in-line reproducible handling of chemical species with a very short lifetime as is the case of the hydroxyl radical generated in the abovementioned luminol/myoglobin reaction. The proposed methodology allowed the determination of mannitol concentrations between 25 mmol L(-1) and 1 mol L(-1), with good precision (R.S.D. < 4.7%, n = 3) and a sampling frequency of about 60 h(-1). The procedure was applied to the determination of mannitol in pharmaceuticals and in human urine samples Without any pretreatment process. The results obtained for pharmaceutical formulations were statistically comparable to those provided by the reference method (R.D. < 4.6%); recoveries values obtained in the analysis of spiked urine samples (between 94.9 and 105.3% of the added amount) were also satisfactory. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Liquid-liquid microextraction without phase segmentation was implemented in a multicommuted flow system for determination of the anti-hypertensive diltiazem. The procedure was based on ion pair formation between the drug and the dye bromothymol blue at pH 3.5. The detection was performed without phase separation in a glass tube coupled to a fiber-optics spectrophotometer. The total volume of chloroform was reduced to 50 mu L in comparison with 10 mL consumed in batch. A linear response was observed between 9 and 120 mu mol L(-1), with a detection limit of 0.9 mu mol L(-1) (99.7% confidence level). The coefficient of variation (n = 10), sampling rate and extraction efficiency were estimated as 0.6%, 78 determinations per hour and 61%, respectively. About 30 mu g of bromothymol blue was consumed and the waste volume was 380 mu L per determination. The results for pharmaceutical samples agreed with those obtained by the reference procedure at the 95% confidence level. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coupling of a flow cell based on a liquid core waveguide (LCW) to flow systems for spectro photometric measurements was critically evaluated. Flow-based systems with and without chemical reactions were exploited to estimate the increase in analytical signal in comparison to those obtained with a conventional I cm cell under different experimental conditions. The Schlieren effect associated to intense concentration gradients in the sample zone was investigated with model solutions that do not absorb visible electromagnetic radiation. The effect of radiation scattering was lower than the expected by considering the increase in the optical path, being the magnitude of the perturbation up to 40% higher for the 100-cm LCW cell. Several alternatives for compensation of the Schlieren effect were experimentally investigated. The potentiality of the LCW for turbidimetric measurements and coupling to monosegmented flow analysis was also evaluated. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The formation of the Mn(III)/EDTA complex in a flow system with solenoid micro-pumps was exploited for fast manganese determination in freshwater. Manganese(II) was oxidized in a solid-phase reactor containing lead dioxide immobilized on polyester. Long pathlength spectrophotometry was exploited to increase sensitivity, aiming to reach the threshold limit established by environmental legislation. A linear response was observed from 25 to 1500 mu g L(-1), with a detection limit of 6 mu g L(-1) (99.7% confidence level). Sample throughput and coefficient of variation were 36 samples/h and 2.6% (n = 10), respectively. EDTA consumption and waste generation were estimated as 500 mu g and 3 mL per determination, respectively. The amount of Pb in the residue corresponds to 250 mu g per determination and a solid-phase reactor could be used for up to 1600 determinations. Adsorption in active charcoal avoided interferences caused by organic matter and the developed procedure was successfully applied for determination of manganese in freshwater samples. Results were in agreement with those attained by GFAAS at the 95% confidence level. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A flow system designed with solenoid micro-pumps is proposed for the determination of paraquat in natural waters. The procedure involves the reaction of paraquat with dehydroascorbic acid followed by spectrophotometric measurements. The proposed procedure minimizes the main drawbacks related to the standard chromatographic procedure and to flow analysis and manual methods with spectrophotometric detection based on the reaction with sodium dithionite, i.e. high solvent consumption and waste generation and low sampling rate for chromatography and high instability of the reagent in the spectrophotometric procedures. A home-made 10-cm optical-path flow cell was employed for improving sensitivity and detection limit. Linear response was observed for paraquat concentrations in the range 0.10-5.0 mg L-1. The detection limit (99.7% confidence level), sampling rate and coefficient of variation (n = 10) were estimated as 22 mu g L-1, 63 measurements per hour and 1.0%, respectively. Results of determination of paraquat in natural water samples were in agreement with those achieved by the chromatographic reference procedure at the 95% confidence level. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A flow system designed with solenoid micro-pumps is introduced for spectrophotometric determination of total tannins based on the Folin- Denis reaction. The procedure minimizes the main drawbacks related to the AOAC batch procedure, i.e. interferences from reducing species in the samples, high reagent consumption and waste generation, and low sampling rate. Linear response was observed for tannic acid concentrations in the range 2-100 mg L-1, with a detection limit (99.7% confidence level) of 0.3 mg L-1. The sampling rate and coefficient of variation (n = 10) were estimated as 75 measurements per hour and 1.1%, respectively. Results of determination of total tannin in tea, beer and wine samples were in agreement with those achieved by the batch reference procedure at the 95% confidence level. In comparison to the batch procedure, the reagent consumption and effluent generation were 83 and 60-fold lower, respectively.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Multi-pumping flow systems exploit pulsed flows delivered by Solenoid pumps. Their improved performance rely on the enhanced radial mass transport inherent to the pulsed flow, which is a consequence of the establishment of vortices thus a tendency towards turbulent mixing. This paper presents several evidences of turbulent mixing in relation to pulsed flows. such as recorded peak shape, establishment of fluidized beds, exploitation of flow reversal, implementation of relatively slow chemical reactions and/or heating of the reaction medium. In addition, Reynolds number associated with the GO period of a pulsed flow is estimated and photographic images of dispersing samples flowing under laminar regime and pulsed flow conditions are presented. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A flow injection (FI) micelle-mediated separation/preconcentration procedure for the determination of lead and cadmium by flame atomic absorption spectrometry (FAAS) has been proposed. The analytes reacted with 1-(2-thiazolylazo)-2-naphthol (TAN) to form hydrophobic chelates, which were extracted into the micelles of 0.05% (w/v) Triton X-114 in a solution buffered at pH 8.4. In the preconcentration stage, the micellar solution was continuously injected into a flow system with four mini-columns packed with cotton, glass wool. or TNT compresses for phase separation. The analytes-containing micelles were eluted from the mini-columns by a stream of 3 mol L(-1) HCl solution and the analytes were determined by FAAS. Chemical and flow variables affecting the preconcentration of the analytes were studied. For 15 mL. of preconcentrated solution, the enhancement factors varied between 15.1 and 20.3, the limits of detection were approximately 4.5 and 0.75 mu g L(-1) for lead and cadmium, respectively. For a solution containing 100 and 10 mu g L(-1) of lead and cadmium, respectively, the R.S.D. values varied from 1.6 to 3.2% (n = 7). The accuracy of the preconcentration system was evaluated by recovery measurements on spiked water samples. The method was susceptible to matrix effects, but these interferences were minimized by adding barium ions as masking agent in the sample solutions, and recoveries from spiked sample varied in the range of 95.1-107.3%. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A multi-pumping flow system exploiting prior assay is proposed for sequential turbidimetric determination of sulphate and chloride in natural waters. Both methods are implemented in the same manifold that provides facilities for: in-line sample clean-up with a Bio-Rex 70 mini-column with fluidized beads: addition of low amounts of sulphate or chloride ions to the reaction medium for improving supersaturation; analyte precipitation with Ba(2+) or Ag(+); real-time decision on the need for next assay. The sample is initially run for chloride determination, and the analytical signal is compared with a preset value. If higher, the sample is run again, now for sulphate determination. The strategy may lead to all increased sample throughput. The proposed system is computer-controlled and presents enhanced figures of merit. About 10 samples are run per hour (about 60 measurements) and results are reproducible and Unaffected by the presence of potential interfering ions at concentration levels usually found in natural waters. Accuracy was assessed against ion chromatography. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel strategy for accomplishing zone trapping in flow analysis is proposed. The sample and the reagent solutions are simultaneously inserted into convergent carrier streams and the established zones merge together before reaching the detector, where the most concentrated portion of the entire sample zone is trapped. The main characteristics, potentialities and limitations of the strategy were critically evaluated in relation to an analogous flow system with zone stopping. When applied to the spectrophotometric determination of nitrite in river waters, the main figures of merit were maintained, exception made for the sampling frequency which was calculated as 189h(-1), about 32% higher relatively to the analogous system with zone stopping. The sample inserted volume can be increased up to 1.0 mL without affecting sampling frequency and no problems with pump heating or malfunctions were noted after 8-h operation of the system. In contrast to zone stopping, only a small portion of the sample zone is halted with zone trapping, leading to these beneficial effects. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present study, quasi-diabatic two-phase flow pattern visualizations and measurements of elongated bubble velocity, frequency and length were performed. The tests were run for R134a and R245fa evaporating in a stainless steel tube with diameter of 2.32 mm, mass velocities ranging from 50 to 600 kg/m(2) s and saturation temperatures of 22 degrees C, 31 degrees C and 41 degrees C. The tube was heated by applying a direct DC current to its surface. Images from a high-speed video-camera (8000 frames/s) obtained through a transparent tube just downstream the heated sections were used to identify the following flow patterns: bubbly, elongated bubbles, churn and annular flows. The visualized flow patterns were compared against the predictions provided by Barnea et al. (1983) [1], Felcar et al. (2007) [10], Revellin and Thome (2007) [3] and Ong and Thome (2009) [11]. From this comparison, it was found that the methods proposed by Felcar et al. (2007) [10] and Ong and Thome (2009) [1] predicted relatively well the present database. Additionally, elongated bubble velocities, frequencies and lengths were determined based on the analysis of high-speed videos. Results suggested that the elongated bubble velocity depends on mass velocity, vapor quality and saturation temperature. The bubble velocity increases with increasing mass velocity and vapor quality and decreases with increasing saturation temperature. Additionally, bubble velocity was correlated as linear functions of the two-phase superficial velocity. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The confined flows in tubes with permeable surfaces arc associated to tangential filtration processes (microfiltration or ultrafiltration). The complexity of the phenomena do not allow for the development of exact analytical solutions, however, approximate solutions are of great interest for the calculation of the transmembrane outflow and estimate of the concentration, polarization phenomenon. In the present work, the generalized integral transform technique (GITT) was employed in solving the laminar and permanent flow in permeable tubes of Newtonian and incompressible fluid. The mathematical formulation employed the parabolic differential equation of chemical species conservation (convective-diffusive equation). The velocity profiles for the entrance region flow, which are found in the connective terms of the equation, were assessed by solutions obtained from literature. The velocity at the permeable wall was considered uniform, with the concentration at the tube wall regarded as variable with an axial position. A computational methodology using global error control was applied to determine the concentration in the wall and concentration boundary layer thickness. The results obtained for the local transmembrane flux and the concentration boundary layer thickness were compared against others in literature. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The machining of hardened steels has always been a great challenge in metal cutting, particularly for drilling operations. Generally, drilling is the machining process that is most difficult to cool due to the tool`s geometry. The aim of this work is to determine the heat flux and the coefficient of convection in drilling using the inverse heat conduction method. Temperature was assessed during the drilling of hardened AISI H13 steel using the embedded thermocouple technique. Dry machining and two cooling/lubrication systems were used, and thermocouples were fixed at distances very close to the hole`s wall. Tests were replicated for each condition, and were carried out with new and worn drills. An analytical heat conduction model was used to calculate the temperature at tool-workpiece interface and to define the heat flux and the coefficient of convection. In all tests using new and worn out drills, the lowest temperatures and decrease of heat flux were observed using the flooded system, followed by the MQL, considering the dry condition as reference. The decrease of temperature was directly proportional to the amount of lubricant applied and was significant in the MQL system when compared to dry cutting. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper deals with the traditional permutation flow shop scheduling problem with the objective of minimizing mean flowtime, therefore reducing in-process inventory. A new heuristic method is proposed for the scheduling problem solution. The proposed heuristic is compared with the best one considered in the literature. Experimental results show that the new heuristic provides better solutions regarding both the solution quality and computational effort.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two bench-scale horizontal anaerobic fixed bed reactors were tested to remove both sulfate and organic matter from wastewater. First, the reactors (R1 and R2) were supplied with synthetic wastewater containing sulfate and a solution of ethanol and volatile fatty acids. Subsequently, RI and R2 were fed with only ethanol or acetate, respectively. The substitution to ethanol in R1 increased the sulfate reduction efficiency from 83% to nearly 100% for a chemical oxygen demand to sulfate (COD/sulfate) ratio of 3.0. In contrast, in R2, the switch in carbon source to acetate strongly decreased sulfidogenesis and the maximum sulfate reduction achieved was 47%. Process stability in long-term experiments and high removal efficiencies of both organic matter and sulfate were achieved with ethanol as the sole carbon source. The results allow concluding that syntrophism instead of competition between the sulfate reducing bacteria and acetoclastic methanogenic archaeal populations prevailed in the reactor. (C) 2009 Elsevier Ltd. All rights reserved.