72 resultados para GAIT BIOMECHANICS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Upper premolars restored with endodontic posts present a high incidence of vertical root fracture (VRF). Two hypotheses were tested: (1) the smaller mesiodistal diameter favors stress concentration in the root and (2) the lack of an effective bonding between root and post increases the risk of VRF. Using finite element analysis, maximum principal stress was analyzed in 3-dimensional intact upper second premolar models. From the intact models, new models were built including endodontic posts of different elastic modulus (E = 37 or E = 200 GPa) with circular or oval cross-section, either bonded or nonbonded to circular or oval cross-section root canals. The first hypothesis was partially confirmed because the conditions involving nonbonded, low-modulus posts showed lower tensile stress for oval canals compared to circular canals. Tensile stress peaks for the nonbonded models were approximately three times higher than for the bonded or intact models, therefore confirming the second hypothesis. (J Endod 2009;35:117-120)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study evaluated the biomechanical and microscopic response of previously grafted bone to titanium implants. The lower incisors of 16 rabbits were surgically extracted, and bilateral perforations communicating with the remaining sockets were created distally. A socket/perforation defect on each mandible was chosen at random to be immediately filled with a xenogenic graft, whereas the contralateral perforation was left to heal naturally and served as a paired control. After 60 days, titanium implants were installed in the previously operated areas. After periods of 2 and 6 months, the animals were killed, and the force necessary to retrieve implants as well as the bone-implant contact (BIC) and bone mass (BM) were quantified and statistically compared by 2-way analysis of variance and Tukey`s test (alpha = .05). No significant differences in removal torque were observed, either by time or by treatment condition. Differences in BIC and BM between experimental and control groups were not statistically significant through the intervals studied (P < .05). The presence of a xenogenic graft did not influence the microscopic tissue response to titanium implants or fixation into newly formed or mature bone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this in vitro study was to analyze the stress distribution on components of a mandibular-cantilevered implant-supported prosthesis with frameworks cast in cobalt-chromium (Co-Cr) or palladium-silver (Pd-Ag) alloys, according to the cantilever length. Frameworks were fabricated on (Co-Cr) and (Pd-Ag) alloys and screwed into standard abutments positioned on a master-cast containing five implant replicas. Two linear strain gauges were fixed on the mesial and distal aspects of each abutment to capture deformation. A vertical static load of 100 N was applied to the cantilever arm at the distances of 10, 15, and 20 mm from the center of the distal abutment and the absolute values of specific deformation were recorded. Different patterns of abutment deformation were observed according to the framework alloy. The Co-Cr alloy framework resulted in higher levels of abutment deformation than the silver-palladium alloy framework. Abutment deformation was higher with longer cantilever extensions. Physical properties of the alloys used for framework interfere with abutment deformations patterns. Excessively long cantilever extensions must be avoided. To cite this article:Jacques LB, Moura MS, Suedam V, Souza EAC, Rubo JH. Effect of cantilever length and framework alloy on the stress distribution of mandibular-cantilevered implant-supported prostheses.Clin. Oral Impl. Res. 20, 2009; 737-741.doi: 10.1111/j.1600-0501.2009.01712.x.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In cantilevered implant-supported complete prosthesis, the abutments` different heights represent different lever arms to which the abutments are subjected resulting in deformation of the components, which in turn transmit the load to the adjacent bone. The purpose of this in vitro study was to quantitatively assess the deformation of abutments of different heights in mandibular cantilevered implant-supported complete prosthesis. A circular steel master cast with five perforations containing implant replicas (O3.75 mm) was used. Two groups were formed according to the types of alloy of the framework (CoCr or PdAg). Three frameworks were made for each group to be tested with 4, 5.5 and 7 mm abutments. A 100 N load was applied at a point 15 mm distal to the center of the terminal implant. Readings of the deformations generated on the mesial and distal aspects of the abutments were obtained with the use of strain gauges. Deformation caused by tension and compression was observed in all specimens with the terminal abutment taking most of the load. An increase in deformation was observed in the terminal abutment as the height was increased. The use of an alloy of higher elastic modulus (CoCr) also caused the abutment deformation to increase. Abutment`s height and framework alloy influence the deformation of abutments of mandibular cantilevered implant-supported prosthesis. To cite this article:Suedam V, Capello SouzaEA, Moura MS, Jacques LB, Rubo JH. Effect of abutment`s height and framework alloy on the load distribution of mandibular cantilevered implant-supported prosthesis. Clin. Oral Impl. Res. 20, 2009; 196-200.doi: 10.1111/j.1600-0501.2008.01609.x.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An inappropriate prosthetic fit could cause stress over the interface implant/bone. The objective of this study was to compare stresses transmitted to implants from frameworks cast using different materials and to investigate a possible correlation between vertical misfits and these stresses. Fifteen one-piece cast frameworks simulating bars for fixed prosthesis in a model with five implants were fabricated and arranged into three different groups according to the material used for casting: CP Ti (commercially pure titanium), Co-Cr (cobalt-chromium) or Ni-Cr-Ti (nickel-chromium-titanium) alloys. Each framework was installed over the metal model with all screws tightened to a 10 N cm torque and then, vertical misfits were measured using an optical microscope. The stresses transmitted to implants were measured using quantitative photoelastic analysis in values of maximum shear stress (T), when each framework was tightened to the photoelastic model to a 10 N cm standardized torque. Stress data were statistically analyzed using one-way ANOVA and Tukey`s test and correlation tests were performed using Pearson`s rank correlation (alpha = 0.05). Mean and standard deviation values of vertical misfit are presented for CP Ti (22.40 +/- 9.05 mu m), Co-Cr (66.41 +/- 35.47 mu m) and Ni-Cr-Ti (32.20 +/- 24.47 mu m). Stresses generated by Co-Cr alloy (tau = 7.70 +/- 2.16 kPa) were significantly higher than those generated by CP Ti (tau = 5.86 +/- 1.55 kPa, p = 0.018) and Ni-Cr-Ti alloy (tau =5.74 +/- 3.05 kPa, p = 0.011), which were similar (p = 0.982). Correlations between vertical misfits and stresses around the implants were not significant as for any evaluated materials. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study compared splinted and non-splinted implant-supported prosthesis with and without a distal proximal contact using a digital image correlation method. An epoxy resin model was made with acrylic resin replicas of a mandibular first premolar and second molar and with threaded implants replacing the second premolar and first molar. Splinted and non-splinted metal-ceramic screw-retained crowns were fabricated and loaded with and without the presence of the second molar. A single-camera measuring system was used to record the in-plane deformation on the model surface at a frequency of 1.0 Hz under a load from 0 to 250 N. The images were then analyzed with specialist software to determine the direct (horizontal) and shear strains along the model. Not splinting the crowns resulted in higher stress transfer to the supporting implants when the second molar replica was absent. The presence of a second molar and an effective interproximal contact contributed to lower stress transfer to the supporting structures even for non-splinted restorations. Shear strains were higher in the region between the molars when the second molar was absent, regardless of splinting. The opposite was found for the region between the implants, which had higher shear strain values when the second molar was present. When an effective distal contact is absent, non-splinted implant-supported restorations introduce higher direct strains to the supporting structures under loading. Shear strains appear to be dependent also on the region within the model, with different regions showing different trends in strain changes in the absence of an effective distal contact. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide synthase (NOS) has been reported to be involved with both bone healing and bone metabolism. The aim of this study was to test the null hypothesis that there is no correlation between new bone formation during mandibular distraction osteogenesis and NOS expression in the trigeminal ganglion of rats. Newly formed tissue during distraction osteogenesis and trigeminal NOS expression measured by the NADPH-diaphorase (NADPH-d) reaction were evaluated in 72 male Wistar rats by histomorphometric and histochemical methods. In animals submitted to 0.5 mm/day distraction osteogenesis, the percentage of bone tissue was higher in the basal area of the mandibles compared with the center and significantly increased through the experimental periods (P < 0.05). At the sixth postoperative week, the difference in bone formation between the continuous and acute distraction osteogenesis groups was the highest. Significant correlation between new bone formation by distraction osteogenesis and NADPH-d-reactive neurons was found, varying according to neuronal cell size (r = -0.6, P = 0.005, small cells strongly stained; r = 0.5, P = 0.018, large cells moderately stained). The results suggest that NOS may play a role in the bone healing process via neurogenic pathways, and the phenomenon seems to be neuronal cell morphotype-dependent. Further studies are now warranted to investigate the mechanistic link between the expression of trigeminal NOS and mandibular new bone formation by distraction osteogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arboreal and terrestrial habitats impose different constraints on tetrapod locomotion. We studied Polychrus acutirostris, a tree-dwelling lizard that also moves on the ground, in order to evaluate the effects of support incline and diameter on locomotion parameters. Limb movements of six specimens were filmed to quantify kinematic variables (velocity, stride frequency, stride length, and limb coordination) on distinct perch diameters (4.0, 1.5, 0.8 cm) and inclines (90, 45, and on level ground). The results show a notable slowness in arboreal habitat combined with a relatively fast locomotion when using the ground as temporary habitat. These animals developed walking trots mainly using lateral sequence. Non-symmetrical trots adopted at the highest velocities on the ground indicate difficulties of ""accommodation"" to the constraints imposed by this condition. Velocity generally decreases with the decreasing diameter, and with increasing incline, of the supports. Slowness, gaits favouring the body stability, elective role of the stride frequency in the modulation of the speed, and the role of the hindlimb in the force exchange to propel the body, constitute the main features of the locomotion pattern of P. acutirostris.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We quantified gait and stride characteristics (velocity, frequency, stride length, stance and swing duration, and duty factor) in the bursts of locomotion of two small, intermittently moving, closely related South American gymnophthalmid lizards: Vanzosaura rubricauda and Procellosaurinus tetradactylus. They occur in different environments: V rubricauda is widely distributed in open areas with various habitats and substrates, while P. tetradactylus is endemic to dunes in the semi-arid Brazilian Caatinga. Both use trot or walking trot characterised by a lateral sequence. For various substrates in a gradient of roughness (perspex, cardboard, sand, gravel), both species have low relative velocities in comparison with those reported for larger continuously moving lizards. To generate velocity, these animals increase stride frequency but decrease relative stride length. For these parameters, P. tetradactylus showed lower values than V rubricauda. In their relative range of velocities, no significant differences in stride length and frequency were recorded for gravel. However, the slopes of a correlation between velocity and its components were lower in P. tetradactylus on cardboard, whereas on sand this was only observed for velocity and stride length. The data showed that the difference in rhythmic parameters between both species increased with the smoothness of the substrates. Moreover, P. tetradactylus shows a highly specialised locomotor strategy involving lower stride length and frequency for generating lower velocities than in V. rubricauda. This suggests the evolution of a central motor pattern generator to control slower limb movements and to produce fewer and longer pauses in intermittent locomotion. (c) 2008 Elsevier GmbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purpose: Recent findings suggest that the noxious gas H(2)S is produced endogenously, and that physiological concentrations of H(2)S are able to modulate pain and inflammation in rodents. This study was undertaken to evaluate the ability of endogenous and exogenous H(2)S to modulate carrageenan-induced synovitis in the rat knee. Experimental approach: Synovitis was induced in Wistar rats by intra-articular injection of carrageenan into the knee joint. Sixty minutes prior to carrageenan injection, the rats were pretreated with indomethacin, an inhibitor of H(2)S formation (dl-propargylglycine) or an H(2)S donor [Lawesson`s reagent (LR)]. Key results: Injection of carrageenan evoked knee inflammation, pain as characterized by impaired gait, secondary tactile allodynia of the ipsilateral hindpaw, joint swelling, histological changes, inflammatory cell infiltration, increased synovial myeloperoxidase, protein nitrotyrosine residues, inducible NOS (iNOS) activity and NO production. Pretreatment with LR or indomethacin significantly attenuated the pain responses, and all the inflammatory and biochemical changes, except for the increased iNOS activity, NO production and 3-NT. Propargylglycine pretreatment potentiated synovial iNOS activity (and NO production), and enhanced macrophage infiltration, but had no effect on other inflammatory parameters. Conclusions and implications: Whereas exogenous H(2)S delivered to the knee joint can produce a significant anti-inflammatory and anti-nociceptive effect, locally produced H(2)S exerts little immunomodulatory effect. These data further support the development and use of H(2)S donors as potential alternatives (or complementary therapies) to the available anti-inflammatory compounds used for treatment of joint inflammation or relief of its symptoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this work was the force-displacement response analysis of the masticatory process in a dried human skull by Double-Exposure Photorefractive Holographic Interferometry Technique (2E-PRHI). The load concentration and dissipation of the forces from dried human skull were analysed at applied loading stands as a Simulation of Isolated Contraction (SIC) of some mastication muscles. The 2EHI and Fringe Analysis Method were used to obtain the quantitative results of this force-displacement response. These results document quantitatively the real biomechanical response from dried human skull under applied loading and it can be used for complementary study by finite element model and others analysis type. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: Studies of the viscoelastic properties of the vocal folds are normally performed with rheometers that use parallel assigned a fixed value. In tissues subject to variation of thickness plates whose interplate space is usually at between samples, fixed gaps could result in different compressions, compromising the comparison among them. We performed,in experimental study to determine whether different compressions call lead to different results in measurements of dynamic viscosity (DV) of vocal fold samples. Methods: We Measured the DV of vocal fold samples of 10 larynges of cadavers under 3 different compression levels, corresponding to 0.2, 0.5, and 10 N on an 8-mm-diameter parallel-plate rheometer. Results: The DV directly varied with compression. We observed statistically significant differences between the results of 0.2 and 10 N (p = 0.0396) and 0.5 and 10 N (p = 0.0442). Conclusions: The study demonstrated that the level of compression influences the DV measure and Suggests that a defined compression level should be used in rheometric studies of biological tissues.