235 resultados para Enzyme Prodrug Therapy
Resumo:
The enzymatic hydrolysis of sugarcane bagasse was investigated by treating a peroxide-alkaline bagasse with a pineapple stem juice, xylanase and cellulase. Pre-treatment procedures of sugarcane bagasse with alkaline hydrogen peroxide were evaluated and compared. Analyses were performed using 2(4) factorial designs, with pre-treatment time, temperature, magnesium sulfate and hydrogen peroxide concentration as factors. The responses evaluated were the yield of cellobiose and glucose released from pretreated bagasse after enzymatic hydrolysis. The results show that the highest enzymatic conversion was obtained for bagasse using 2% hydrogen peroxide at 60 degrees C for 16 h in the presence of 0.5% magnesium sulfate. Bagasse (5%) was treated with pineapple stem extract, which contains mixtures of protease and esterase, in combination with xylanase and cellulase. It was observed that the amount of glucose and cellobiose released from bagasse increased with the mixture of enzymes. It is believed that the enzymes present in pineapple extracts are capable of hydrolyze specific linkages that would facilitate the action of digesting plant cell walls enzymes. This increases the amount of glucose and other hexoses that are released during the enzymatic treatment and also reduces the amount of cellulase necessary in a typical hydrolysis. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The principal aim of studies of enzyme-mediated reactions has been to provide comparative and quantitative information on enzyme-catalyzed reactions under distinct conditions. The classic Michaelis-Menten model (Biochem Zeit 49:333, 1913) for enzyme kinetic has been widely used to determine important parameters involved in enzyme catalysis, particularly the Michaelis-Menten constant (K (M) ) and the maximum velocity of reaction (V (max) ). Subsequently, a detailed treatment of the mechanisms of enzyme catalysis was undertaken by Briggs-Haldane (Biochem J 19:338, 1925). These authors proposed the steady-state treatment, since its applicability was constrained to this condition. The present work describes an extending solution of the Michaelis-Menten model without the need for such a steady-state restriction. We provide the first analysis of all of the individual reaction constants calculated analytically. Using this approach, it is possible to accurately predict the results under new experimental conditions and to characterize and optimize industrial processes in the fields of chemical and food engineering, pharmaceuticals and biotechnology.
Resumo:
The total protein content and activity of the enzymes glutathione reductase (GR), superoxide dismutase (SOD) and thioredoxin reductase (TrxR) were evaluated in Acidithiobacillus ferrooxidans LR cells maintained in contact with the metal sulfide chalcopyrite for 1 and 10 days. A significant decrease in total protein content was observed in cells maintained for 10 days in the presence of chalcopyrite, suggesting proteolytic breakdown clue to exposure to the metal sulfide. Following 10 clays of contact with chalcopyrite, increases in GR, SOD and TrxR activities were detected, suggesting the formation of reactive oxygen species. After ten clays, there was a fivefold increase in GR activity, of which, isoenzyme IV represented approximately 82% of the total. An increase in Fe-SOD activity following ten days exposure to chalcopyrite was also determined, as measured on non-denaturing polyacrylamide gels. Also, after 10 days. an approximately 31-fold increase was observed for TrxR activity. The presence of oxidative stress when A. ferrooxidans is in the presence of chalcopyrite could have a negative impact on bioleaching. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Whole rice has been widely studied due to the abundance of bioactive compounds in its pericarp. Some of the beneficial effects of these compounds on human health have been attributed to their antioxidant and other biological activities, such as enzyme inhibition. In this work, we evaluated the contents of total, soluble and insoluble phenolic compounds of 6 red and 10 non-pigmented genotypes of whole rice as well as their inhibitory effect on the activity of angiotensin I-converting enzyme (ACE). The effects of cooking on phenolics and their inhibitory activities were also investigated. Red genotypes showed high content of phenolics, mainly soluble compounds, at an average of 409.7 mg ferulic acid eq./100 g, whereas overall lower average levels (99.4 mg ferulic acid eq./100 g) at an approximate soluble/insoluble compound ratio of 1:1 were observed in non-pigmented rice. Pigmented rice displayed a greater inhibitory effect on ACE than non-pigmented rice. In fact, a significant correlation between the content of soluble phenolics and ACE inhibition was observed (r = 0.8985, p < 0.05). In addition to significantly reducing the levels of total phenolics and ACE inhibition, cooking altered the soluble/insoluble compound ratio, especially among red rice genotypes. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Objective-Clinical trials of statins during myocardial infarction (MI) have differed in their therapeutic regimes and generated conflicting results. This study evaluated the role of the timing and potency of statin therapy on its potential mechanisms of benefit during MI. Methods and Results-ST-elevation MI patients (n = 125) were allocated into 5 groups: no statin; 20, 40, or 80 mg/day simvastatin starting at admission; or 80 mg/day simvastatin 48 hours after admission. After 7 days, all patients switched their treatment to 20 mg/day simvastatin for an additional 3 weeks and then underwent flow-mediated dilation in the brachial artery. As of the second day, C-reactive protein (CRP) differed between non-statin users (12.0 +/- 4.1 mg/L) and patients treated with 20 (8.5 +/- 4.0 mg/L), 40 (3.8 +/- 2.5 mg/L), and 80 mg/day (1.4 +/- 1.5 mg/L), and the daily differences remained significant until the seventh day (P < 0.0001). The higher the statin dose, the lower the elevation of interleukin-2 and tumor necrosis factor-alpha, the greater the reduction of 8-isoprostane and low-density lipoprotein(-), and the greater the increase in nitrate/nitrite levels during the first 5 days (P < 0.001). Later initiation of statin was less effective than its early introduction in relation to attenuation of CRP, interleukin-2, tumor necrosis factor-alpha, 8-isoprostane, and low-density lipoprotein(-), as well as in increase in nitrate/nitrite levels (P < 0.0001). At the 30th day, there was no longer a difference in lipid profile or CRP between groups; the flow-mediated dilation, however, was proportional to the initial statin dose and was higher for those who started the treatment early (P = 0.001). Conclusion-This study demonstrates that the timing and potency of statin treatment during MI are key elements for their main mechanisms of benefit.
Resumo:
Chagas` disease, infection caused by the protozoan Trypanosoma cruzi, is an important, social and medical ailment in the Latin America. This disease is endemic in 21 countries, mostly Latin America countries, with more than 300,000 new cases every year and about 16-18 million infected people. Current therapy is not effective in the chronic phase of the disease. Thus, new and better drugs are urgently needed. In this sense, the in vitro activity of primaquine (PQ) was reported. Based on this, peptide prodrugs of primaquine containing dipeptides - lysine-arginine (LysArg), phenylalanine-alanine (PheAla) and phenylalanine-arginine (PheArg) -- as carriers, were designed to be selectively cleaved by cruzain, a specific cysteine protease of T. cruzi. The prodrugs have shown to be active against tripomastigote forms according to this order: LysArg-PQ> PheAla-PQ> PheArg-PQ. The molecular mechanism of action considered a probable nucleophilic attack of the catalytic residue of cruzain (Cys25) on the respective prodrug amide carbonyl carbon, releasing PQ. In order to test this hypothesis, molecular modeling studies were performed, physicochemical parameters and stereoelectronic features calculated by using the AM1 semi-empirical method suggest that the amide carbonyl carbon is favorable for cleavage, where the LysArg showed the most electronic reactive and sterically disposable, leading to the prodrug release and action. In addition, the docking study indicates the occurrence of specific interactions between prodrugs and the pockets S1 and S2 of cruzain through the dipeptides carriers, being the distance between cruzain Cys25 and the amide carbonyl group related to the biological activity of the prodrugs.
Resumo:
PEGylation is one of the most promising and extensively studied strategies for improving the pharmacological properties of proteins as well as their physical and thermal stability. Purified lysozyme obtained from hen egg white by batch mode was modified by PEGylation with methoxypolyethyleneglycol succinimidyl succinato (mPEG-SS, MW 5000). The conjugates produced retained full enzyme activity with the substrate glycol chitosan, independent of degree of enzyme modification, although lysozyme activity with the substrate Micrococcus lysodeikticus was altered according to the degree of modification. The conjugate with a low degree of modification by mPEG-SS retained 67% of its enzyme activity with the M. lysodeikticus substrate. The mPEG-SS was also shown to be a highly reactive polymer. The effects of pH and temperature on PEGylated lysozymes indicated that the conjugate was active over a wide pH range and was stable up to 50 degrees C. This conjugate also showed resistance to proteolytic degradation, remained stable in human serum, and displayed greater antimicrobial activity than native lysozyme against Gram-negative bacteria.
Resumo:
Hepatocellular carcinoma (HCC) ranks in prevalence and mortality among top 10 cancers worldwide. Butyric acid (BA), a member of histone deacetylase inhibitors (HDACi) has been proposed as an anticareinogenic agent. However, its short half-life is a therapeutical limitation. This problem could be circumvented with tributyrin (TB), a proposed BA prodrug. To investigate TB effectiveness for chemoprevention, rats were treated with the compound during initial phases of ""resistant hepatocyte"" model of hepatocarcinogenesis, and cellular and molecular parameters were evaluated. TB inhibited (p < 0.05) development of hepatic preneoplastic lesions (PNL) including persistent ones considered HCC progression sites. TB increased (p < 0.05) PNL remodeling, a process whereby they tend to disappear. TB did not inhibit cell proliferation in PNL, but induced (p < 0.05) apoptosis in remodeling ones. Compared to controls, rats treated with TB presented increased (P < 0.05) hepatic levels of BA indicating its effectiveness as a prodrug. Molecular mechanisms of TB-induced hepatocarcinogenesis chemoprevention were investigated. TB increased (p < 0.05) hepatic nuclear histone H3K9 hyperacetylation specifically in PNL and p21 protein expression, which could be associated with inhibitory HDAC effects. Moreover, it reduced (p < 0.05) the frequency of persistent PNL with aberrant cytoplasmic p53 accumulation, an alteration associated with increased malignancy. Original data observed in our study support the effectiveness of TB as a prodrug of BA and as an HDACi in hepatocarcinogenesis chemoprevention. Besides histone acetylation and p21 restored expression, molecular mechanisms involved with TB anticarcinogenic actions could also be related to modulation of p53 pathways. (C) 2008 Wiley-Liss, Inc.
Resumo:
Nitric oxide (NO) plays an important role in the control of the vascular tone and the most often employed NO donors have limitations due to their harmful side-effects. In this context, new NO donors have been prepared, in order to minimize such undesirable effects. cis-[Ru(bpy)(2)(py)NO(2)](PF(6)) (RuBPY) is a new nitrite complex synthesized in our laboratory that releases NO in the presence of the vascular tissue only. In this work the vasorelaxation induced by this NO donor has been studied and compared to that obtained with the well known NO donor SNP. The relaxation induced by RuBPY is concentration-dependent in denuded rat aortas pre-contracted with phenylephrine (EC(50)). This new compound induced relaxation with efficacy similar to that of SNP, although its potency is lower. The time elapsed until maximum relaxation is achieved (E(max) = 240 s) is similar to measured for SNP (210 s). Vascular reactivity experiments demonstrated that aortic relaxation by RuBPY is inhibited by the soluble guanylyl-cyclase inhibitor 1H-[1,2,4] oxadiozolo[4,3-a]quinoxaline-1-one (ODQ 1 mu M). In a similar way, 1 mu M ODQ also reduces NO release from the complex as measured with DAF-2 DA by confocal microscopy. These findings suggest that this new complex RuBPY that has nitrite in its structure releases NO inside the vascular smooth muscle cell. This ruthenium complex releases significant amounts of NO only in the presence of the aortic tissue. Reduction of nitrite to NO is most probably dependent on the soluble guanylyl-cyclase enzyme, since NO release is inhibited by ODQ. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Under continuous photolysis at 675 nm, liposomal zinc phthalocyanine associated with nitrosyl ruthenium complex [Ru(NH.NHq)(tpy)NO](3+) showed the detection and quantification of nitric oxide (NO) and singlet oxygen ((1)O(2)) release. Photophysical and photochemical results demonstrated that the interaction between the nitrosyl ruthenium complex and the photosensitizer can enable an electron transfer process from the photosensitizer to the nitrosyl ruthenium complex which leads to NO release. Synergistic action of both photosensitizers and the nitrosyl ruthenium complex results in the production of reactive oxygen species and reactive nitrogen species, which is a potent oxidizing agent to many biological tissues, in particular neoplastic cells.
Resumo:
In this work, we have used molecular dynamics, density functional theory, virtual screening, ADMET predictions, and molecular interaction field studies to design and propose eight novel potential inhibitors of CDK2. The eight molecules proposed showed interesting structural characteristics that are required for inhibiting the CDK2 activity and show potential as drug candidates for the treatment of cancer. The parameters related to the Rule of Five were calculated, and only one of the molecules violated more than one parameter. One of the proposals and one of the drug-like compounds selected by virtual screening indicated to be promising candidates for CDK2-based cancer therapy.
Resumo:
In this work we evaluated the photophysical and in vitro properties of Foscan (R), a second-generation photosensitizer drug (PS) widely used in systemic clinical protocols for cancer therapy based on Photodynamic Therapy (PDT). We employed biodegradable nanoemulsions (NE) as a colloidal vehicle of the oil/water (o/w) type focusing in topical administration of Foscan (R) and other photosensitizer drugs. This formulation was obtained and stabilized by the methodology described by Tabosa do Egito et al.,(30) based on the mixture of two phases: an aqueous solution and an organic medium consisting of nonionic surfactants and oil. The photodynamic potential of the drug incorporated into the NE was studied by steady-state and time-resolved spectroscopic techniques. We also analyzed the in vitro biological behavior carried out in mimetic biological environment protocols based on the animal model. After topical application in a skin animal model, we evaluated the Foscan (R)/NE diffusion flux into the skin layers (stratum corneum and epidermis + dermis) by classical procedures using Franz Diffusion cells. Our results showed that the photophysical properties of PS were maintained after its incorporation into the NE when compared with homogeneous organic medium. The in vitro assays enabled the determination of an adequate profile for the interaction of this system in the different skin layers, with an ideal time lag of 6 h after topical administration in the skin model. The Foscan (R) diffusion flux (J) was increased when this PS was incorporated into the NE, if compared with its flux in physiological medium. These parameters demonstrated that the NE can be potentially applied as a drug delivery system (DDS) for Foscan (R) in both in vitro and in vivo assays, as well as in future clinical applications involving topical skin cancer PDT.
Resumo:
Meso-tetra-(N-methylpiridinium-4-yl)-porphyrin (TMPyP) and meso-tetra-(4-sulfonatophenyl)-porphyrin (TPPS(4)) are photosensitizing drugs (PS) used in photodynamic therapy (PDT). Based on the fact that these compounds present similar chemical structures but opposite charges at pH levels near physiological conditions, this work aims to evaluate the in vitro and in vivo influence of these electrical charges on the iontophoretic delivery of TMPyP and TPPS4, attempting to achieve maximum accumulation of PS in skin tissue. The iontophoretic transport of these drugs from a hydrophilic gel was investigated in vitro using porcine ear skin and vertical, flow-through diffusion cells. In vivo experiments using rats were also carried out, and the penetration of the PSs was analyzed by fluorescence microscopy to visualize the manner of how these compounds were distributed in the skin after a short period of iontophoresis application. In vitro, both passive and iontophoretic delivery of the positively charged TMPyP were much greater (20-fold and 67-fold, respectively) than those of the negatively charged TPPS(4). TPPS(4) iontophoresis in vivo increased the fluorescence of the skin only in the very superficial layers. On the other hand, iontophoresis of the positively charged drug expressively increased the rat epidermis and dermis fluorescence, indicating high amounts of this drug throughout the skin layers. Moreover, TMPyP was homogeneously distributed around and into the nuclei of the skin cells, suggesting its potential use in topical PDT. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A thrombin-like enzyme named BjussuSP-I, isolated from B. jararacussu snake venom, is an acidic single chain glycoprotein with approximately 6% sugar, Mr = 61,000 under reducing conditions and pI similar to 3.8, representing 1.09% of the chromatographic A(280) recovery. BjussuSP-I is a glycosylated scrine protease containing both N-linked carbohydrates and sialic acid in its structure. BjussuSP-I showed a high clotting activity upon human plasma, which was inhibited by PMSF, leupeptin, heparin and 1,10-phenantroline. This enzyme showed high stability regarding coagulant activity when analyzed at different temperatures (-70 to 37 degrees C), pHs (4.5 to 8.0), and presence of two divalent metal ions (Ca2+ and Mg2+). It also displayed TAME esterase and proteolytic activities toward natural (fibrinogen and fibrin) and synthetic (BAPNA) substrates, respectively, being also inhibited by PMSF and leupeptin. BjussuSP-I can induce production of polyclonal antibodies able to inhibit its clotting activity, but unable to inhibit its proteolytic activity on fibrinogen. The enzyme also showed crossed immunoreactivity against I I venom samples of Bothrops, I of Crotalus, and I of Calloselasma snakes, in addition of LAAO isolated from B. moojeni venom. It displayed neither hemorrhagic, myotoxic, edema-inducing profiles nor proteolytic activity on casein. BjussuSP-I showed an N-terminal sequence (VLGGDECDfNEHPFLA FLYS) similar to other thrombin-like enzymes from snake venoms. Based on its biochemical, enzymatic and pharmacological characteristics, BjussuSP-I was identified as a new thrombin-like enzyme isoform from Bothrops jararacussu snake venom. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The ability of gonadal hormones to influence and induce diverse immunological functions during the course of a number of parasitic infections has been extensively studied in the latest decades. Dehydroepiandrosterone and its sulfate are the most abundant steroid hormones secreted by the human adrenal cortex and are considered potent immune-activators. The effects of orchiectomy on the course of Trypanosoma cruzi infection in rats, treated and untreated with DHEA were examined, by comparing blood and cardiac parasitism, macrophage numbers, nitric oxide and IFN-gamma levels. Orchiectomy enhanced resistance against infection with elevated numbers of macrophages, enhanced concentrations of NO and IFN-gamma and reduced amastigote burdens in heart when compared to control animals. DHEA replacement exerted a synergistic effect, up-modulating the immune response. Male sex steroids appear to play fundamental role in determining the outcome of disease, through the regulation and modulation of the activity of the immune response. (C) 2008 Elsevier Inc. All rights reserved.