64 resultados para Electrical and numerical simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive an analytic expression for the matric flux potential (M) for van Genuchten-Mualem (VGM) type soils which can also be written in terms of a converging infinite series. Considering the first four terms of this series, the accuracy of the approximation was verified by comparing it to values of M estimated by numerical finite difference integration. Using values of the parameters for three soils from different texture classes, the proposed four-term approximation showed an almost perfect match with the numerical solution, except for effective saturations higher than 0.9. Including more terms reduced the discrepancy but also increased the complexity of the equation. The four-term equation can be used for most applications. Cases with special interest in nearly saturated soils should include more terms from the infinite series. A transpiration reduction function for use with the VGM equations is derived by combining the derived expression for M with a root water extraction model. The shape of the resulting reduction function and its dependency on the derivative of the soil hydraulic diffusivity D with respect to the soil water content theta is discussed. Positive and negative values of dD/d theta yield concave and convex or S-shaped reduction functions, respectively. On the basis of three data sets, the hydraulic properties of virtually all soils yield concave reduction curves. Such curves based solely on soil hydraulic properties do not account for the complex interactions between shoot growth, root growth, and water availability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simplex-lattice statistical project was employed to study an optimization method for a preservative system in an ophthalmic suspension of dexametasone and polymyxin B. The assay matrix generated 17 formulas which were differentiated by the preservatives and EDTA (disodium ethylene diamine-tetraacetate), being the independent variable: X-1 = chlorhexidine digluconate (0.010 % w/v); X-2 = phenylethanol (0.500 % w/v); X-3 = EDTA (0.100 % w/v). The dependent variable was the Dvalue obtained from the microbial challenge of the formulas and calculated when the microbial killing process was modeled by an exponential function. The analysis of the dependent variable, performed using the software Design Expert/W, originated cubic equations with terms derived from stepwise adjustment method for the challenging microorganisms: Pseudomonas aeruginosa, Burkholderia cepacia, Staphylococcus aureus, Candida albicans and Aspergillus niger. Besides the mathematical expressions, the response surfaces and the contour graphics were obtained for each assay. The contour graphs obtained were overlaid in order to permit the identification of a region containing the most adequate formulas (graphic strategy), having as representatives: X-1 = 0.10 ( 0.001 % w/v); X-2 = 0.80 (0.400 % w/v); X-3 = 0.10 (0.010 % w/v). Additionally, in order to minimize responses (Dvalue), a numerical strategy corresponding to the use of the desirability function was used, which resulted in the following independent variables combinations: X-1 = 0.25 (0.0025 % w/v); X-2 = 0.75 (0.375 % w/v); X-3 = 0. These formulas, derived from the two strategies (graphic and numerical), were submitted to microbial challenge, and the experimental Dvalue obtained was compared to the theoretical Dvalue calculated from the cubic equation. Both Dvalues were similar to all the assays except that related to Staphylococcus aureus. This microorganism, as well as Pseudomonas aeruginosa, presented intense susceptibility to the formulas independently from the preservative and EDTA concentrations. Both formulas derived from graphic and numerical strategies attained the recommended criteria adopted by the official method. It was concluded that the model proposed allowed the optimization of the formulas in their preservation aspect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polybia scutellaris constructs huge nests characterized by numerous spinal projections on the surface. We investigated the thermal characteristics of P scutellaris nests in order to determine whether their nest temperature is homeothermically maintained and whether the spines play a role in the thermoregulation of the nests. In order to examine these hypotheses, we measured the nest temperature in a active nest and in an abandoned nest. The temperature in the active nest was almost stable at 27 degrees C, whereas that of the abandoned nest varied with changes in the ambient temperature, suggesting that nest temperature was maintained by the thermogenesis of colony individuals. In order to predict the thermal properties of the spines, a numerical simulation was employed. To construct a 3D-model of a P scutellaris nest, the nest architecture was simplified into an outer envelope and the surface spines, for both of which the initial temperature was set at 27 degrees C. The physical properties of the simulated nest were regarded to be those of wood since the nest of this species is constructed from plant materials. When the model was exposed to cool air (12 degrees C), the temperature was lower in the models with more spines. On the other hand, when the nest was heated (42 degrees C), the temperature increase was smaller in models with more spines. It is suggested that the spines act as a heat radiator, not as an insulator, against the changes in ambient temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To test a mathematical model for measuring blinking kinematics. Spontaneous and reflex blinks of 23 healthy subjects were recorded with two different temporal resolutions. A magnetic search coil was used to record 77 blinks sampled at 200 Hz and 2 kHz in 13 subjects. A video system with low temporal resolution (30 Hz) was employed to register 60 blinks of 10 other subjects. The experimental data points were fitted with a model that assumes that the upper eyelid movement can be divided into two parts: an impulsive accelerated motion followed by a damped harmonic oscillation. All spontaneous and reflex blinks, including those recorded with low resolution, were well fitted by the model with a median coefficient of determination of 0.990. No significant difference was observed when the parameters of the blinks were estimated with the under-damped or critically damped solutions of the harmonic oscillator. On the other hand, the over-damped solution was not applicable to fit any movement. There was good agreement between the model and numerical estimation of the amplitude but not of maximum velocity. Spontaneous and reflex blinks can be mathematically described as consisting of two different phases. The down-phase is mainly an accelerated movement followed by a short time that represents the initial part of the damped harmonic oscillation. The latter is entirely responsible for the up-phase of the movement. Depending on the instantaneous characteristics of each movement, the under-damped or critically damped oscillation is better suited to describe the second phase of the blink. (C) 2010 Elsevier B.V. All rights reserved.