84 resultados para DEVELOPING HIPPOCAMPAL-NEURONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corticotrophin-releasing factor (CRF) and alpha-melanocyte-stimulating hormone (alpha-MSH), both of which are synthesized by hypothalamic neurons, play an essential role in the control of energy homeostasis. Neuroendocrine and behavioural responses induced by lipopolyssacharide (LPS) have been shown to involve prostaglandin-mediated pathways. This study investigated the effects of prostaglandin on CRF and alpha-MSH neuronal activities in LPS-induced anorexia. Male Wistar rats were pretreated with indomethacin (10 mg kg(-1); i.p.) or vehicle; 15 min later they received LPS (500 mu g kg(-1); i.p.) or saline injection. Food intake, hormone responses and Fos-CRF and Fos-alpha-MSH immunoreactivity in the paraventricular and arcuate nuclei, respectively, were evaluated. In comparison with saline treatment, LPS administration induced lower food intake and increased plasma ACTH and corticosterone levels, as well as an increase in Fos-CRF and Fos-alpha-MSH double-labelled neurons in vehicle-pretreated rats. In contrast, indomethacin treatment partly reversed the hypophagic effect, blunted the hormonal increase and blocked the Fos-CRF and Fos-alpha-MSH hypothalamic double labelling increase in response to the LPS stimulus. These data demonstrate that the activation of pro-opiomelanocortin and CRF hypothalamic neurons following LPS administration is at least partly mediated by the prostaglandin pathway and is likely to be involved in the modulation of feeding behaviour during endotoxaemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the well-established sympathoexcitation evoked by chemoreflex activation, the specific sub-regions of the CNS underlying such sympathetic responses remain to be fully characterized. In the present study we examined the effects of intermittent chemoreflex activation in awake rats on Fos-immunoreactivity (Fos-ir) in various subnuclei of the paraventricular nucleus of the hypothalamus (PVN), as well as in identified neurosecretory preautonomic PVN neurons. In response to intermittent chemoreflex activation, a significant increase in the number of Fos-ir cells was found in autonomic-related PVN subnuclei, including the posterior parvocellular, ventromedial parvocellular and dorsal-cap, but not in the neurosecretory magnocellular-containing lateral magnocellular subnucleus. No changes in Fos-ir following chemoreflex activation were observed in the anterior PVN subnucleus. Experiments combining Fos immunohistochemistry and neuronal tract tracing techniques showed a significant increase in Fos-ir in rostral ventrolateral medulla (RVLM)-projecting (PVN-RVLM), but not in nucleus of solitarii tract (NTS)-projecting PVN neurons. In summary, our results support the involvement of the PVN in the central neuronal circuitry activated in response to chemoreflex activation, and indicate that PVN-RVLM neurons constitute a neuronal substrate contributing to the sympathoexcitatory component of the chemoreflex. Published by Elsevier Ltd on behalf of IBRO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: Several physiological, pharmacological and behavioral lines of evidence suggest that the hippocampal formation is involved in nociception. The hippocampus is also believed to play an important role in the affective and motivational components of pain perception. Thus, Our aim was to investigate the participation of cholinergic, opioidergic and GABAergic systems of the dorsal hippocampus (DH) in the modulation of nociception in guinea pigs. Main methods: The test used consisted of the application of a peripheral noxious stimulus (electric shock) that provokes the emission of a vocalization response by the animal. Key findings: Our results showed that, in guinea pigs, microinjection of carbachol, morphine and bicuculline into the DH Promoted anti nociception, while muscimol promoted pronociception. These results were verified by a decrease and all increase, respectively, in the vocalization index in the vocalization test. This antinociceptive effect of carbachol (2.7 nmol) was blocked by previous administration of atropine (0.7 nmol) or naloxone (1.3 nmol) into the same site. In addition, the decrease in the vocalization index induced by the microinjection of morphine (2.2 nmol) into the DH was prevented by pretreatment with naloxone (1.3 nmol) or muscimol (0.5 nmol). At doses of 1.0 nmol, muscimol microinjection caused pronociception, while bicuculline promoted antinociception. Significance: These results indicate the involvement of the cholinergic, opioidergic and GABAergic systems of the DH in the modulation of antinociception in guinea pigs. In addition, the present study suggests that cholinergic transmission may activate the release of endorphins/enkephalin from interneurons of the DH, Which Would inhibit GABAergic neurons, resulting in antinociception. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atrial mechanoreceptors, sensitive to stretch, contribute in regulating heart rate and intravascular volume. The information from those receptors reaches the nucleus tractus solitarius and then the paraventricular nucleus (PVN), known to have a crucial role in the regulation of cardiovascular function. Neurons in the PVN synthesize CRF, AVP, and oxytocin (OT). Stimulation of atrial mechanoreceptors was performed in awake rats implanted with a balloon at the junction of the superior vena cava and right atrium. Plasma ACTH, AVP, and OT concentrations and Fos, CRF, AVP, and OT immunolabeling in the PVN were determined after balloon inflation in hydrated and water-deprived rats. The distension of the balloon increased the plasma ACTH concentrations, which were higher in water-deprived than in hydrated rats (P < 0.05). In addition, the distension in the water-deprived group decreased plasma AVP concentrations (P < 0.05), compared with the respective control group. The distension increased the number of Fos- and double-labeled Fos/CRF neurons in the parvocellular PVN, which was higher in the water-deprived than in the hydrated group (P < 0.01). There was no difference in the Fos expression in magnocellular PVN neurons after distension in hydrated and water-deprived groups, compared with respective controls. In conclusion, parvocellular CRF neurons showed an increase of Fos expression induced by stimulation of right atrial mechanoreceptors, suggesting that CRF participates in the cardiovascular reflex adjustments elicited by volume loading. Activation of CRF neurons in the PVN by cardiovascular reflex is affected by osmotic stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vitro, nitric oxide (NO) inhibits the firing rate of magnocellular neurosecretory cells (MNCs) of hypothalamic supraoptic and paraventricular nuclei and this effect has been attributed to GABAergic activation. However, little is known about the direct effects of NO in MNCs. We used the patch-clamp technique to verify the effect Of L-arginine, a precursor for NO synthesis, and N-omega-nitro-L-arginine methyl ester hydrochloride (L-NAME), an inhibitor of NOS, on spontaneous electrical activity of MNCs after glutamatergic and GABAergic blockade in Wistar rat brain slices. 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX) (10 mu M) and DL-2-amino-5-phosphonovaleric acid (DL-AP5) (30 mu M) were used to block postsynaptic glutamatergic currents, and picrotoxin (30 mu M) and saclofen (30 mu M) to block ionotropic and metabotropic postsynaptic GABAergic currents. Under these conditions, 500 mu M L-arginine decreased the firing rate from 3.7 +/- 0.6 Hz to 1.3 +/- 0.3 Hz. Conversely, 100 mu M L-NAME increased the firing rate from 3.0 +/- 0.3 Hz to 5.8 +/- 0.4 Hz. All points histogram analysis showed changes in resting potential from -58.1 +/- 0.8 mV to -62.2 +/- 1.1 mV in the presence of L-arginine and from -59.8 +/- 0.7 mV to -56.9 +/- 0.8 mV by L-NAME. Despite the nitrergic modulator effect on firing rate, some MNCs had no significant changes in their resting potential. In those neurons, hyperpolarizing after-potential (HAP) amplitude increased from 12.4 +/- 1.2 mV to 16.8 +/- 0.7 mV by L-arginine, but without significant changes by L-NAME treatment. To our knowledge, this is the first demonstration that NO can inhibit MNCs independent of GABAergic inputs. Further, our results point to HAP as a potential site for nitrergic modulation. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammatory and infectious processes evoke neuroendocrine and behavioral changes known as acute-phase response that includes activation of the hypothalamo-pituitary-adrenal (HPA) axis and reduction of food intake. Besides its action as the most important ACTH secretagogue, corticotrophin-releasing factor (CRF), synthesized in the paraventricular nucleus (PVN), is also involved in the control of food intake. Alpha-melanocyte stimulating hormone (alpha-MSH) in the arcuate nucleus also plays a role in the energy homeostasis, possessing anorexigenic effects. To investigate the participation of neuropeptides involved in the regulation of food intake during endotoxemia, we administrated lipopolysaccharide (LPS) in sham-operated and adrenalectomized (ADX) male Wistar rats to evaluate food intake, hormone responses and Fos-CRF and Fos-alpha-MSH immunoreactivity in the PVN and arcuate nucleus, as well as CRF and POW mRNA expression in these hypothalamic nuclei. In sham-operated rats, treatment with LPS (100 mu g/kg) showed lower food intake, higher plasma ACTH and corticosterone levels, as well as an increase in Fos-CRF double labeled neurons and CRF mRNA expression in the PVN, with no changes in Fos-alpha-MSH immunoreactivity and POW mRNA expression in the arcuate nucleus, compared to saline treated rats. After LPS treatment, ADX rats showed further increase in plasma ACTH levels, marked decrease of food intake, higher Fos-CRF immunoreactive neurons in the PVN and CRF mRNA expression, as well as an increase in Fos-alpha-MSH immunoreactivity and POW mRNA expression in the arcuate nucleus, compared to sham-operated rats treated with LPS. In conclusion, the present data indicate that the marked hypophagia during endotoxemia following ADX is associated with an increased activation of CRF and POW neurons in the hypothalamus and an increased mRNA expression of these neuropeptides. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Examination of the epidemiology and timing of trauma deaths has been deemed a useful method to evaluate the quality of trauma care. Objective: The purpose of this study was to evaluate the quality of trauma care in a regional trauma system and in a university hospital in Brazil by comparing the timing of deaths in the studied prehospital and in-hospital settings to those published for trauma systems in other areas. Methods: We analyzed the National Health Minister`s System of Deaths Information for the prehospital mortality and we retrospectively collected the demographics, timelines, and trauma severity scores of all in-hospital patients who died after admission through the Emergency Unit of Hospital das Clinicas de Ribeirao Preto between 2000 and 2001. Results. During the study period, there were 787 trauma fatalities in the city: 448 (56.9%) died in the prehospital setting and 339 (43.1%) died after being admitted to a medical facility. In 2 years, 238 trauma deaths occurred in the studied hospital, and we found a complete clinical set of data for 224 of these patients. The majority of deaths in the prehospital setting were caused by penetrating injuries (66.7%), whereas in-hospital mortality was mainly because of blunt traumas (59.1%). The largest number of in-hospital deaths occurred beyond 72 hours of stay (107 patients-47%). Conclusions: The region studied showed some deficiencies in prehospital and in-hospitals settings, in particular in the critical care and short-term follow-up of trauma patients when compared with the literature. Particularly, the late mortality may be related to training and human resources deficiency. Based on the timeline of trauma deaths, we can suggest that the studied region needs improvements in the prehospital trauma system and in hospital critical care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was aimed to determine whether imipramine chronic treatment promotes neurogenesis in the dentate gyrus (DG) and interferes with neuronal death in the CA1 subfield of the hippocampus after transient global cerebral ischemia (TGCI) in rats. After TGCI, animals were treated with imipramine (20 mg/kg, i.p.) or saline during 14 days. 5-Bromo-2`-deoxyuridine-5`-monophosphate (BrdU) was injected 24 h after the last imipramine or saline injection to label proliferating cells. In order to confirm the effect of TGCI on neuronal death and cell proliferation, a group of animals was sacrificed 7 days after TGCI. Neurogenesis and neurodegeneration were evaluated by doublecortin (DCX)-immunohistochemistry and Fluoro-Jade C (FJC)- staining, respectively. The rate of cell proliferation increases 7 days but returns to basal levels 14 days after TGCI. There was a significant increase in the number of FJC-positive neurons in the CA1 of animals 7 and 14 days after TGCI. Chronic imipramine treatment increased cell proliferation in the SGZ of DG and reduced the neurodegeneration in the CA] of the hippocampus 14 days after TGCI. Immunohistochemistry for DCX detected an increased number of newly generated neurons in the hippocampal DG 14 days after TGCI, which was not affected by imipramine treatment. Further studies are needed to evaluate whether imipramine treatment for longer time would be able to promote survival of newly generated neurons as well as to improve functional recovery after TGCI. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humans and mice with loss-of-function mutations of the genes encoding kisspeptins (Kiss1) or kisspeptin receptor (Kiss1r) are infertile due to hypogonadotropic hypogonadism. Within the hypothalamus, Kiss1 mRNA is expressed in the anteroventral periventricular nucleus (AVPV) and the arcuate nucleus (Arc). In order to better study the different populations of kisspeptin cells we generated Kiss1-Cre transgenic mice. We obtained one line with Cre activity specifically within Kiss1 neurons (line J2-4), as assessed by generating mice with Cre-dependent expression of green fluorescent protein or beta-galactosidase. Also, we demonstrated Kiss1 expression in the cerebral cortex and confirmed previous data showing Kiss1 mRNA in the medial nucleus of amygdala and anterodorsal preoptic nucleus. Kiss1 neurons were more concentrated towards the caudal levels of the Arc and higher leptin-responsivity was observed in the most caudal population of Arc Kiss1 neurons. No evidence for direct action of leptin in AVPV Kiss1 neurons was observed. Me lanocortin fibers innervated subsets of Kiss1 neurons of the preoptic area and Arc, and both populations expressed melanocortin receptors type 4 (MC4R). Specifically in the preoptic area, 18-28% of Kiss1 neurons expressed MC4R. In the Arc, 90% of Kiss1 neurons were glutamatergic, 50% of which also were GABAergic. In the AVPV, 20% of Kiss1 neurons were glutamatergic whereas 75% were GABAergic. The differences observed between the Kiss1 neurons in the preoptic area and the Arc likely represent neuronal evidence for their differential roles in metabolism and reproduction. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We assessed the role of NK-1 receptors (NK1R) expressing neurons in the locus coeruleus (LC) on cardiorespiratory responses to hypercapnia. To this end, we injected substance P-saporin conjugate (SP-SAP) to kill NK-1 immunoreactive (NK1R-ir) neurons or SAP alone as a control. Immunohistochemistry for NK1R, tyrosine hydroxylase (TH-ir) and Glutamic Acid Decarboxylase (GAD-ir) were performed to verify if NK1R-expressing neurons, catecholaminergic and/or GABAergic neurons were eliminated. A reduced NK1R-ir in the LC (72%) showed the effectiveness of the lesion. SP-SAP lesion also caused a reduction of TH-ir (66%) and GABAergic neurons (70%). LC SP-SAP lesion decreased by 30% the ventilatory response to 7% CO(2) and increased the heart rate (fH) during hypercapnia but did not affect MAP. The present data suggest that different populations of neurons (noradrenergic, GABAergic, and possibly others) in the LC express NK1R modulating differentially the hypercapnic ventilatory response, since catecholaminergic neurons are excitatory and GABAergic ones are inhibitory. Additionally, NK1R-ir neurons in the LC, probably GABAergic ones, seem to modulate fH during CO(2) exposure, once our previous data demonstrated that catecholaminergic lesion does not affect this variable. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies have provided evidence of the important effects of omega-3 fatty acid on the brain in neurological conditions, including epilepsy. Previous data have indicated that omega-3 fatty acids lead to prevention of status epilepticus-associated neuropathological changes in the hippocampal formation of rats with epilepsy. Omega-3 fatty acid supplementation has resulted in extensive preservation of GABAergic cells in animals with epilepsy. This study investigated the interplay of these effects with neurogenesis and brain-derived neurotrophic factor (BDNF). The results clearly showed a positive effect of long-term omega-3 fatty acid supplementation on brain plasticity in animals with epilepsy. Enhanced hippocampal neurogenesis and BDNF levels and preservation of interneurons expressing parvalbumin were observed. Parvalbumin-positive cells were identified as surviving instead of newly formed cells. Additional investigations are needed to determine the electrophysiological properties of the newly formed cells and to clarify whether the effects of omega-3 fatty acids on brain plasticity are accompanied by functional gain in animals with epilepsy. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The superior cervical ganglion (SCG) in mammals varies in structure according to developmental age, body size, gender, lateral asymmetry, the size and nuclear content of neurons and the complexity and synaptic coverage of their dendritic trees. In small and medium-sized mammals, neuron number and size increase from birth to adulthood and, in phylogenetic studies, vary with body size. However, recent studies on larger animals suggest that body weight does not, in general, accurately predict neuron number. We have applied design-based stereological tools at the light-microscopic level to assess the volumetric composition of ganglia and to estimate the numbers and sizes of neurons in SCGs from rats, capybaras and horses. Using transmission electron microscopy, we have obtained design-based estimates of the surface coverage of dendrites by postsynaptic apposition zones and model-based estimates of the numbers and sizes of synaptophysin-labelled axo-dendritic synaptic disks. Linear regression analysis of log-transformed data has been undertaken in order to establish the nature of the relationships between numbers and SCG volume (V(scg)). For SCGs (five per species), the allometric relationship for neuron number (N) is N=35,067xV (scg) (0.781) and that for synapses is N=20,095,000xV (scg) (1.328) , the former being a good predictor and the latter a poor predictor of synapse number. Our findings thus reveal the nature of SCG growth in terms of its main ingredients (neurons, neuropil, blood vessels) and show that larger mammals have SCG neurons exhibiting more complex arborizations and greater numbers of axo-dendritic synapses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stellate ganglion (SG) represents the main sympathetic input to the heart. This study aimed at investigating physical exercise-related changes in the quantitative aspects of SG neurons in treadmill-exercised Wistar rats. By applying state-of-the-art design-based stereology, the SG volume, total number of SG neurons, mean perikaryal volume of SG neurons, and the total volume of neurons in the whole SG have been examined. Arterial pressure and heart rate were also measured at the end of the exercise period. The present study showed that a low-intensity exercise training program caused a 12% decrease in the heart rate of trained rats. In contrast, there were no effects on systolic pressure, diastolic pressure, or mean arterial pressure. As to quantitative changes related to physical exercise, the main findings were a 21% increase in the fractional volume occupied by neurons in the SG, and an 83% increase in the mean perikaryal volume of SG neurons in treadmill-trained rats, which shows a remarkable neuron hypertrophy. It seems reasonable to infer that neuron hypertrophy may have been the result of a functional overload imposed on the SG neurons by initial posttraining sympathetic activation. From the novel stereological data we provide, further investigations are needed to shed light on the mechanistic aspect of neuron hypertrophy: what role does neuron hypertrophy play? Could neuron hypertrophy be assigned to the functional overload induced by physical exercise? (C) 2008 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tick-borne zoonoses (TBZ) are emerging diseases worldwide. A large amount of information (e.g. case reports, results of epidemiological surveillance, etc.) is dispersed through various reference sources (ISI and non-ISI journals, conference proceedings, technical reports, etc.). An integrated database-derived from the ICTTD-3 project (http://www.icttd.nl)-was developed in order to gather TBZ records in the (sub-)tropics, collected both by the authors and collaborators worldwide. A dedicated website (http://www.tickbornezoonoses.org) was created to promote collaboration and circulate information. Data collected are made freely available to researchers for analysis by spatial methods, integrating mapped ecological factors for predicting TBZ risk. The authors present the assembly process of the TBZ database: the compilation of an updated list of TBZ relevant for (sub-)tropics, the database design and its structure, the method of bibliographic search, the assessment of spatial precision of geo-referenced records. At the time of writing, 725 records extracted from 337 publications related to 59 countries in the (sub-)tropics, have been entered in the database. TBZ distribution maps were also produced. Imported cases have been also accounted for. The most important datasets with geo-referenced records were those on Spotted Fever Group rickettsiosis in Latin-America and Crimean-Congo Haemorrhagic Fever in Africa. The authors stress the need for international collaboration in data collection to update and improve the database. Supervision of data entered remains always necessary. Means to foster collaboration are discussed. The paper is also intended to describe the challenges encountered to assemble spatial data from various sources and to help develop similar data collections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A great number of studies on scorpion venoms associate their effects to the autonomic nervous system, and few data are available about their action on the central nervous system (CNS). The aim of this work was to evaluate some central effects after intraperitoneal injection of Tityus serrulatus or T. bahiensis scorpion venoms. The hippocampal concentration of some neurotransmitters and their metabolites were determined. Electroencephalographic and behavioral observations were performed, and all brains were removed for histopathological analysis of hippocampal areas. Both venoms induced electrographic and behavioral alterations despite T bahiensis venom affects less the electrographic activity than T. serrulatus venom. Neurochemical analysis demonstrated no alteration in the extracellular levels of almost all the neurotransmitters evaluated, at least in the hippocampus, and no neuronal loss in this area was observed. Meanwhile, extracellular concentration of HVA increased up to 10 times in approximately 1/3 of the animals of both groups. Scorpion venoms seem to exert a small but important central effect. More studies in this field are necessary because they may be useful in developing new strategies to reduce the damage caused by scorpion stings. (C) 2009 Elsevier Ireland Ltd. All rights reserved.