225 resultados para Cross-flow
Resumo:
Incoherent eta photoproduction in nuclei is evaluated at forward angles within 4 to 9 GeV using a multiple scattering Monte Carlo cascade calculation with full eta-nucleus final-state interactions. The Primakoff, nuclear coherent and nuclear incoherent components of the cross sections fit remarkably well previous measurements for Be and Cu from Cornell, suggesting a destructive interference between the Coulomb and nuclear coherent amplitudes for Cu. The inelastic background of the data is consistently attributed to the nuclear incoherent part, which is clearly not isotropic as previously considered in Cornell's analysis. The respective Primakoff cross sections from Be and Cu give Gamma(eta ->gamma gamma)=0.476(62) keV, where the quoted error is only statistical. This result is consistent with the Particle Data Group average of 0.510(26) keV and in sharp contrast (similar to 50%) with the value of 0.324(46) keV obtained at Cornell.
Resumo:
Large parity-violating longitudinal single-spin asymmetries A(L)(e+) = 0.86(-0.14)(+0.30) and Ae(L)(e-) = 0.88(-0.71)(+0.12) are observed for inclusive high transverse momentum electrons and positrons in polarized p + p collisions at a center-of-mass energy of root s = 500 GeV with the PHENIX detector at RHIC. These e(+/-) come mainly from the decay of W(+/-) and Z(0) bosons, and their asymmetries directly demonstrate parity violation in the couplings of the W(+/-) to the light quarks. The observed electron and positron yields were used to estimate W(+/-) boson production cross sections for the e(+/-) channels of sigma(pp -> W(+)X) X BR(W(+) -> e(+) nu(e)) = 144.1 +/- 21.2(stat)(-10.3)(+3.4)(syst) +/- 21.6(norm) pb, and sigma(pp -> W(-)X) X BR(W(-) -> e(-) (nu) over bar (e)) = 3.17 +/- 12.1(stat)(-8.2)(+10.1)(syst) +/- 4.8(norm) pb.
Resumo:
Measurements of double-helicity asymmetries in inclusive hadron production in polarized p + p collisions are sensitive to helicity-dependent parton distribution functions, in particular, to the gluon helicity distribution, Delta g. This study focuses on the extraction of the double-helicity asymmetry in eta production ((p) over right arrow + (p) over right arrow -> eta + X), the eta cross section, and the eta/pi(0) cross section ratio. The cross section and ratio measurements provide essential input for the extraction of fragmentation functions that are needed to access the helicity-dependent parton distribution functions.
Resumo:
Differential measurements of the elliptic (upsilon(2)) and hexadecapole (upsilon(4)) Fourier flow coefficients are reported for charged hadrons as a function of transverse momentum (p(T)) and collision centrality or number of participant nucleons (N(part)) for Au + Au collisions at root s(NN) = 200 GeV/ The upsilon(2,4) measurements at pseudorapidity vertical bar eta vertical bar <= 0.35, obtained with four separate reaction-plane detectors positioned in the range 1.0 < vertical bar eta vertical bar < 3.9, show good agreement, indicating the absence of significant Delta eta-dependent nonflow correlations. Sizable values for upsilon(4)(p(T)) are observed with a ratio upsilon(4)(p(T), N(part))/upsilon(2)(2)(p(T), N(part)) approximate to 0.8 for 50 less than or similar to N(part) less than or similar to 200, which is compatible with the combined effects of a finite viscosity and initial eccentricity fluctuations. For N(part) greater than or similar to 200 this ratio increases up to 1.7 in the most central collisions.
Resumo:
We present inclusive charged hadron elliptic flow (v(2)) measured over the pseudorapidity range vertical bar eta vertical bar < 0.35 in Au+Au collisions at s(NN)=200 GeV. Results for v(2) are presented over a broad range of transverse momentum (p(T)=0.2-8.0 GeV/c) and centrality (0-60%). To study nonflow effects that are correlations other than collective flow, as well as the fluctuations of v(2), we compare two different analysis methods: (1) the event-plane method from two independent subdetectors at forward (vertical bar eta vertical bar=3.1-3.9) and beam (vertical bar eta vertical bar>6.5) pseudorapidities and (2) the two-particle cumulant method extracted using correlations between particles detected at midrapidity. The two event-plane results are consistent within systematic uncertainties over the measured p(T) and in centrality 0-40%. There is at most a 20% difference in the v(2) between the two event-plane methods in peripheral (40-60%) collisions. The comparisons between the two-particle cumulant results and the standard event-plane measurements are discussed.
Resumo:
The PHENIX experiment presents results from the RHIC 2006 run with polarized p + p collisions at root s = 62.4 GeV, for inclusive pi(0) production at midrapidity. Unpolarized cross section results are measured for transverse momenta p(T) = 0.5 to 7 GeV/c. Next-to-leading order perturbative quantum chromodynamics calculations are compared with the data, and while the calculations are consistent with the measurements, next-to-leading logarithmic corrections improve the agreement. Double helicity asymmetries A(LL) are presented for p(T) = 1 to 4 GeV/c and probe the higher range of Bjorken x of the gluon (x(g)) with better statistical precision than our previous measurements at root s = 200 GeV. These measurements are sensitive to the gluon polarization in the proton for 0.06 < x(g) < 0.4.
Resumo:
Fluctuations in the initial geometry of a nucleus-nucleus collision have been recently shown to result in a new type of directed flow (v(1)) that, unlike the usual directed flow, is also present at midrapidity. We compute this new v(1) versus transverse momentum and centrality for Au-Au collisions at RHIC using the hydrodynamic code NeXSPheRIO. We find that the event plane of v(1) is correlated with the angle of the initial dipole of the distribution, as predicted, though with a large dispersion. It is uncorrelated with the reaction plane. Our results are in excellent agreement with results inferred from STAR correlation data.
Resumo:
We show the effects of the granular structure of the initial conditions of a hydrodynamic description of high-energy nucleus-nucleus collisions on some observables, especially on the elliptic-flow parameter upsilon(2). Such a structure enhances production of isotropically distributed high-p(T) particles, making upsilon(2) smaller there. Also, it reduces upsilon(2) in the forward and backward regions where the global matter density is smaller and, therefore, where such effects become more efficacious.
Resumo:
The nuclear gross theory, originally formulated by Takahashi and Yamada (1969 Prog. Theor. Phys. 41 1470) for the beta-decay, is applied to the electronic-neutrino nucleus reactions, employing a more realistic description of the energetics of the Gamow-Teller resonances. The model parameters are gauged from the most recent experimental data, both for beta(-)-decay and electron capture, separately for even-even, even-odd, odd-odd and odd-even nuclei. The numerical estimates for neutrino-nucleus cross-sections agree fairly well with previous evaluations done within the framework of microscopic models. The formalism presented here can be extended to the heavy nuclei mass region, where weak processes are quite relevant, which is of astrophysical interest because of its applications in supernova explosive nucleosynthesis.
Resumo:
Elastic scattering angular distributions for (7)Be, (9)Be, and (10)Be isotopes on (12)C target were measured at laboratory energies of 18.8, 26.0, and 23.2 MeV, respectively. The analysis was performed in terms of optical model potentials using Woods-Saxon and double-folding form factors. Also, continuum discretized coupled-channels calculations were performed for (7)Be and (9)Be + (12)C systems to infer the role of breakup in the elastic scattering. For the (10)Be + (12)C system, bound states coupled-channels calculations were considered. Moreover, total reaction cross sections were deduced from the elastic scattering analysis and compared with published data on other weakly and tightly bound projectiles elastically scattered on the (12)C target, as a function of energy.
Resumo:
We report on a measurement of the gamma(1S + 2S + 3S) -> e(+)e(-) cross section at midrapidity in p + p collisions at root s = 200 GeV. We find the cross section to be 114 +/- 38(stat + fit)(-24)(+23)(syst) pb. Perturbative QCD calculations at next-to-leading order in the color evaporation model are in agreement with our measurement, while calculations in the color singlet model underestimate it by 2 sigma. Our result is consistent with the trend seen in world data as a function of the center-of-mass energy of the collision and extends the availability of gamma data to RHIC energies. The dielectron continuum in the invariant-mass range near the gamma is also studied to obtain a combined yield of e(+)e(-) pairs from the sum of the Drell-Yan process and b-(b) over bar production.
Resumo:
We present the results of an elliptic flow, v(2), analysis of Cu + Cu collisions recorded with the solenoidal tracker detector (STAR) at the BNL Relativistic Heavy Ion Collider at root s(NN) = 62.4 and 200 GeV. Elliptic flow as a function of transverse momentum, v(2)(p(T)), is reported for different collision centralities for charged hadrons h(+/-) and strangeness-ontaining hadrons K(S)(0), Lambda, Xi, and phi in the midrapidity region vertical bar eta vertical bar < 1.0. Significant reduction in systematic uncertainty of the measurement due to nonflow effects has been achieved by correlating particles at midrapidity, vertical bar eta vertical bar < 1.0, with those at forward rapidity, 2.5 < vertical bar eta vertical bar < 4.0. We also present azimuthal correlations in p + p collisions at root s = 200 GeV to help in estimating nonflow effects. To study the system-size dependence of elliptic flow, we present a detailed comparison with previously published results from Au + Au collisions at root s(NN) = 200 GeV. We observe that v(2)(p(T)) of strange hadrons has similar scaling properties as were first observed in Au + Au collisions, that is, (i) at low transverse momenta, p(T) < 2 GeV/c, v(2) scales with transverse kinetic energy, m(T) - m, and (ii) at intermediate p(T), 2 < p(T) < 4 GeV/c, it scales with the number of constituent quarks, n(q.) We have found that ideal hydrodynamic calculations fail to reproduce the centrality dependence of v(2)(p(T)) for K(S)(0) and Lambda. Eccentricity scaled v(2) values, v(2)/epsilon, are larger in more central collisions, suggesting stronger collective flow develops in more central collisions. The comparison with Au + Au collisions, which go further in density, shows that v(2)/epsilon depends on the system size, that is, the number of participants N(part). This indicates that the ideal hydrodynamic limit is not reached in Cu + Cu collisions, presumably because the assumption of thermalization is not attained.
Resumo:
The elastic scattering of (6)He on (120)Sn has been measured at four energies above the Coulomb barrier using the (6)He beam produced at the RIBRAS (Radioactive Ion Beams in Brasil) facility. The elastic angular distributions have been analyzed with the optical model and three- and four-body continuum-discretized coupled-channels calculations. The total reaction cross sections have been derived and compared with other systems of similar masses.
Resumo:
We report a measurement of the longitudinal double-spin asymmetry A(LL) and the differential cross section for inclusive pi(0) production at midrapidity in polarized proton collisions at s=200 GeV. The cross section was measured over a transverse momentum range of 1 < p(T)< 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p(T)< 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of pi(0)'s in their parent jets was found to be around 0.7 for electromagnetically triggered events.
Resumo:
The elastic-scattering angular distribution for (8)Li on (12)C has been measured at E(LAB) = 23.9 MeV with (8)Li radioactive nuclear beam produced by the Radioactive Ion Beams in Brazil facility. This angular distribution was analyzed in terms of optical-model with Woods-Saxon and double-folding Sao Paulo potential. The roles of the breakup and inelastic channels were also investigated with cluster folding and deformed potentials, respectively, through coupled-channels calculations. The angular distribution for the proton-transfer (12)C((8)Li, (9)Be)(11)B reaction was also measured at the same energy. The spectroscopic factor for the <(9)Be|(8)Li + p > bound system was obtained and compared with shell-model calculations and with other experimental values. Total reaction cross sections for the present system were also extracted from the elastic-scattering analysis. A systematic of the reduced reaction cross sections obtained from the present and published data on (6,7,8)Li isotopes on (12)C was performed as a function of energy.