152 resultados para Concentration technique
Resumo:
This work presents a novel dressing technique that allows the inscription of pre-configurable patterns, or textures, on the grinding wheel surface. An electro-mechanical exciter connected to the dressing tool receives synchronized signal from a control software engraving patterns on the grinding wheel. The dressing and grinding operations were evaluated using the AE mapping technique. The presented applications show the use of textured grinding wheels for better grinding process performance in conventional applications and also for the production of patterned surfaces in order to change its functional performance. The results and analysis allow a better understanding of the grinding mechanism with patterned wheels. With the application of the proposed method it was possible to inscribe different patterns on workpieces and also to increase the grinding performance in conventional applications. (C) 2010 CIRP.
Resumo:
Many factors affect the airflow patterns, thermal comfort, contaminant removal efficiency and indoor air quality at individual workstations in office buildings. In this study, four ventilation systems were used in a test chamber designed to represent an area of a typical office building floor and reproduce the real characteristics of a modern office space. Measurements of particle concentration and thermal parameters (temperature and velocity) were carried out for each of the following types of ventilation systems: (a) conventional air distribution system with ceiling supply and return; (b) conventional air distribution system with ceiling supply and return near the floor; (c) underfloor air distribution system; and (d) split system. The measurements aimed to analyse the particle removal efficiency in the breathing zone and the impact of particle concentration on an individual at the workstation. The efficiency of the ventilation system was analysed by measuring particle size and concentration, ventilation effectiveness and the indoor/outdoor ratio. Each ventilation system showed different airflow patterns and the efficiency of each ventilation system in the removal of the particles in the breathing zone showed no correlation with particle size and the various methods of analyses used. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The elastic mechanical behavior of elastic materials is modeled by a pair of independent constants (Young`s modulus and Poisson`s coefficient). A precise measurement for both constants is necessary in some applications, such as the quality control of mechanical elements and standard materials used for the calibration of some equipment. Ultrasonic techniques have been used because wave velocity depends on the elastic properties of the propagation medium. The ultrasonic test shows better repeatability and accuracy than the tensile and indentation test. In this work, the theoretical and experimental aspects related to the ultrasonic through-transmission technique for the characterization of elastic solids is presented. Furthermore, an amorphous material and some polycrystalline materials were tested. Results have shown an excellent repeatability and numerical errors that are less than 3% in high-purity samples.
Resumo:
This paper presents concentration inequalities and laws of large numbers under weak assumptions of irrelevance that are expressed using lower and upper expectations. The results build upon De Cooman and Miranda`s recent inequalities and laws of large numbers. The proofs indicate connections between the theory of martingales and concepts of epistemic and regular irrelevance. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In this study, the concept of cellular automata is applied in an innovative way to simulate the separation of phases in a water/oil emulsion. The velocity of the water droplets is calculated by the balance of forces acting on a pair of droplets in a group, and cellular automata is used to simulate the whole group of droplets. Thus, it is possible to solve the problem stochastically and to show the sequence of collisions of droplets and coalescence phenomena. This methodology enables the calculation of the amount of water that can be separated from the emulsion under different operating conditions, thus enabling the process to be optimized. Comparisons between the results obtained from the developed model and the operational performance of an actual desalting unit are carried out. The accuracy observed shows that the developed model is a good representation of the actual process. (C) 2010 Published by Elsevier Ltd.
Resumo:
The objective was to study the flow pattern in a plate heat exchanger (PHE) through residence time distribution (RTD) experiments. The tested PHE had flat plates and it was part of a laboratory scale pasteurization unit. Series flow and parallel flow configurations were tested with a variable number of passes and channels per pass. Owing to the small scale of the equipment and the short residence times, it was necessary to take into account the influence of the tracer detection unit on the RID data. Four theoretical RID models were adjusted: combined, series combined, generalized convection and axial dispersion. The combined model provided the best fit and it was useful to quantify the active and dead space volumes of the PHE and their dependence on its configuration. Results suggest that the axial dispersion model would present good results for a larger number of passes because of the turbulence associated with the changes of pass. This type of study can be useful to compare the hydraulic performance of different plates or to provide data for the evaluation of heat-induced changes that occur in the processing of heat-sensitive products. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The salt-induced precipitation of lysozyme from aqueous solutions was studied at 25 degrees C and various pH values by cloud-point investigations, precipitation experiments (analysing the compositions of the coexisting phases) and microscopic investigations of the precipitates. Sodium sulphate as well as ammonium sulphate were used to induce the precipitation. The experimental results are discussed and used to develop a scheme of the phase equilibrium in water-rich aqueous solutions of lysozyme and either Na2SO4 or (NH4)(2)SO4. (C) 2007 Elsevier B.V All rights reserved.
Resumo:
Since the recombinant thyroid-stimulating hormone (rhTSH) is secreted by stably transfected Chinese hamster ovary (CHO-hTSH) cells, a bioprocess consisting of immobilizing the cells on a substrate allowing their multiplication is very suitable for rhTSH recovering from supernatants at relative high degree of purity. In addition, such a system has also the advantage of easily allowing delicate manipulations of culture medium replacement. In the present study, we show the development of a laboratory scale bioprocess protocol of CHO-hTSH cell cultures on cytodex microcarriers (MCs) in a 1 L bioreactor, for the preparation of rhTSH batches in view of structure/function studies. CHO-hTSH cells were cultivated on a fetal bovine serum supplemented medium during cell growth phase. For rhTSH synthesis phase, 75% of supernatant was replaced by animal protein-free medium every 24 h. Cell cultures were monitored for agitation (rpm), temperature (A degrees C), dissolved oxygen (% DO), pH, cell concentration, MCs coverage, glucose consumption, lactate production, and rhTSH expression. The results indicate that the amount of MCs in the culture and the cell concentration at the beginning of rhTSH synthesis phase were crucial parameters for improving the final rhTSH production. By cultivating the CHO-hTSH cells with an initial cell seeding of four cells/MC on 4 g/L of MCs with a repeated fed batch mode of operation at 40 rpm, 37 A degrees C, 20% DO, and pH 7.2 and starting the rhTSH synthesis phase with 3 x 10(6) cells/mL, we were able to supply the cultures with enough glucose, to maintain low levels of lactate, and to provide high percent (similar to 80%) of fully covered MCs for a long period (5 days) and attain a high cell concentration (similar to 9 x 10(5) cells/mL). The novelty of the present study is represented by the establishment of cell culture conditions allowing us to produce similar to 1.6 mg/L of rhTSH in an already suitable degree of purity. Batches of produced rhTSH were purified and showed biological activity.
Resumo:
This paper presents a relatively simple method to fabricate field-emitter arrays from silicon substrates. These devices are obtained from silicon micromachining by means of the HI-PS technique-a combination of hydrogen ion implantation and porous silicon used as sacrificial layer. Also, a new process sequence is proposed and implemented to fabricate self-aligned integrated field-emission devices based on this technique. Electrical characteristics of the microtips obtained show good agreement with the Fowler-Nordheim theory, which are suitable for the proposed application.
Resumo:
This article presents a back-electromotive force (BEMF)-based technique of detection for sensorless brushless direct current motor (BLDCM) drivers. The BLDCM has been chosen as the energy converter in rotary or pulsatile blood pumps that use electrical motors for pumping. However, in order to operate properly, the BLDCM driver needs to know the shaft position. Usually, that information is obtained through a set of Hall sensors assembled close to the rotor and connected to the electronic controller by wires. Sometimes, a large distance between the motor and controller makes the system susceptible to interference on the sensor signal because of winding current switching. Thus, the goal of the sensorless technique presented in this study is to avoid this problem. First, the operation of BLDCM was evaluated on the electronic simulator PSpice. Then, a BEMF detector circuitry was assembled in our laboratories. For the tests, a sensor-dependent system was assembled where the direct comparison between the Hall sensors signals and the detected signals was performed. The obtained results showed that the output sensorless detector signals are very similar to the Hall signals at speeds of more than 2500 rpm. Therefore, the sensorless technique is recommended as a responsible or redundant system to be used in rotary blood pumps.
Resumo:
Honeycomb structures have been used in different engineering fields. In civil engineering, honeycomb fiber-reinforced polymer (FRP) structures have been used as bridge decks to rehabilitate highway bridges in the United States. In this work, a simplified finite-element modeling technique for honeycomb FRP bridge decks is presented. The motivation is the combination of the complex geometry of honeycomb FRP decks and computational limits, which may prevent modeling of these decks in detail. The results from static and modal analyses indicate that the proposed modeling technique provides a viable tool for modeling the complex geometry of honeycomb FRP bridge decks. The modeling of other bridge components (e.g., steel girders, steel guardrails, deck-to-girder connections, and pier supports) is also presented in this work.
Resumo:
Copper strike baths are extensively used in metal plating industry as they present the ability to plate adherent copper layers on less-noble metal substrates such as steel and zinc die castings. However, in the last few years, due to environmental controls and safety policies for operators, the plating industry has been interested in replacing the toxic cyanide copper strike baths with environmentally friendly baths. A broad bibliographic review showed that the published papers, referring to the new nontoxic copper strike baths, are patents, having little or no emphasis focused on electrodeposition mechanisms. Therefore, it was decided to study the copper electrodeposition mechanism from a strike alkaline bath prepared with one of the most nontoxic chelating agents cited in many patents which is the 1-hydroxyethane-1,1-diphosphonic acid, known as HEDP. This acid forms very stable water soluble complexes with Cu(2+) ions, thus cupric sulfate was used for preparing the plating bath. The results obtained through a cyclic voltammetry technique showed that Cu(2+) ion reduction to Cu from an HEDP electrodeposition bath occurs via a direct reduction reaction without a formation of Cu(+) intermediates. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this study was to evaluate the effect of particle size and concentration of poly(F.-caprolactone) and adipate modified starch blend on mineralization in soils with differing textures, comparing it with polyethylene under the same experimental conditions. Two soil types were used: a Kandiudalfic Eutrudox with a clayey texture and an Arenic Hapludult with a sandy texture. The two different plastic specimens were incorporated in the form of plastic films with three increasing particle sizes and six doses, from 0 to 2.5 mg C g(-1) soil. Each plastic dose was incorporated into 200 g of soil placed in a hermetically closed jar at 28 degrees C, and incubated for a 120-day period to determine CO(2) evolution. Once again it was confirmed that polyethylene is almost non-biodegradable, in contrast to PCL/S, which can be defined as a biodegradable material. Soil texture affected the mineralization kinetics of the plastic specimens, with higher values for the clayey soil. No changes in soil microbial biomass-C or -N were observed by adding polyethylene and PCL/S to the soil. Also, no significant differences were observed on seed emergence and development of rice seedlings (Oryza sativa L.) in plastic modified soil. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to determine the median lethal concentration (LC(50)) of the commercial products Boveril WP (R) (Beauveria bassiana) and Metarril WP (R) (Metarhizium anisopliae) on the larvae and pupae of the fruit Ceratitis capitata. Insects used in this study came from a laboratory colony. The evaluated product concentrations were 10.00, 15.00, 20.00 and 25.00 g/L of water, which correspond, respectively, to 5.00x10(9), 7.50x10(9), 10.00x10(9) and 12.50x10(9) viable conidia/L of water for the two products, and in the control only water was applied. Third instar larvae and pupae of C. capitata were used in this study. Results showed an overall mortality of larvae with all conidial concentrations of M. anisopliae. The LC(50) values for larvae were 2.99 and 2.97 g/L for Boveril (R) and Metarril (R), respectively, while for pupae they were 3.12 and 4.74 g/L for Boveril (R) and Metarril (R), respectively. The high pathogenicity demonstrated by lower conidial concentrations of the tested products may mean greater efficiency from both economic and environmental points of view.
Resumo:
This work aimed at evaluating the total carotenoids production by a newly isolated Sporidiobolus pararoseus. Bioproduction was carried out in an orbital shaker, using 10% (w/v) of inoculum (25 A degrees C, 180 rpm for 35 h), incubated for 120 h in a dark room. Liquid N(2) and dimethylsulphoxide (DMSO) were used for cell rupture, and carotenoids were extracted with a solution of acetone/methanol (7:3, v/v). Optimization of carotenoids bioproduction was achieved by experimental design technique. Initially, a Plackett-Burman design was used for the screening of the most important factors, after the statistical analysis, a complete second-order design was carried out to optimize the concentration of total carotenoids in a conventional medium. Maximum concentration of 856 mu g/L of total carotenoids was obtained in a medium containing 60 g/L of glucose, 15 g/L of peptone, and 15 g/L of malt extract, 25 A degrees C, initial pH 4.0 and 180 rpm. Fermentation kinetics showed that the maximum concentration of total carotenoids was reached after 102 h of fermentation and that carotenoids bioproduction was associated with cell growth.