75 resultados para Computer control systems
Resumo:
In the MPC literature, stability is usually assured under the assumption that the state is measured. Since the closed-loop system may be nonlinear because of the constraints, it is not possible to apply the separation principle to prove global stability for the Output feedback case. It is well known that, a nonlinear closed-loop system with the state estimated via an exponentially converging observer combined with a state feedback controller can be unstable even when the controller is stable. One alternative to overcome the state estimation problem is to adopt a non-minimal state space model, in which the states are represented by measured past inputs and outputs [P.C. Young, M.A. Behzadi, C.L. Wang, A. Chotai, Direct digital and adaptative control by input-output, state variable feedback pole assignment, International journal of Control 46 (1987) 1867-1881; C. Wang, P.C. Young, Direct digital control by input-output, state variable feedback: theoretical background, International journal of Control 47 (1988) 97-109]. In this case, no observer is needed since the state variables can be directly measured. However, an important disadvantage of this approach is that the realigned model is not of minimal order, which makes the infinite horizon approach to obtain nominal stability difficult to apply. Here, we propose a method to properly formulate an infinite horizon MPC based on the output-realigned model, which avoids the use of an observer and guarantees the closed loop stability. The simulation results show that, besides providing closed-loop stability for systems with integrating and stable modes, the proposed controller may have a better performance than those MPC controllers that make use of an observer to estimate the current states. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Among several process variability sources, valve friction and inadequate controller tuning are supposed to be two of the most prevalent. Friction quantification methods can be applied to the development of model-based compensators or to diagnose valves that need repair, whereas accurate process models can be used in controller retuning. This paper extends existing methods that jointly estimate the friction and process parameters, so that a nonlinear structure is adopted to represent the process model. The developed estimation algorithm is tested with three different data sources: a simulated first order plus dead time process, a hybrid setup (composed of a real valve and a simulated pH neutralization process) and from three industrial datasets corresponding to real control loops. The results demonstrate that the friction is accurately quantified, as well as ""good"" process models are estimated in several situations. Furthermore, when a nonlinear process model is considered, the proposed extension presents significant advantages: (i) greater accuracy for friction quantification and (ii) reasonable estimates of the nonlinear steady-state characteristics of the process. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we devise a separation principle for the finite horizon quadratic optimal control problem of continuous-time Markovian jump linear systems driven by a Wiener process and with partial observations. We assume that the output variable and the jump parameters are available to the controller. It is desired to design a dynamic Markovian jump controller such that the closed loop system minimizes the quadratic functional cost of the system over a finite horizon period of time. As in the case with no jumps, we show that an optimal controller can be obtained from two coupled Riccati differential equations, one associated to the optimal control problem when the state variable is available, and the other one associated to the optimal filtering problem. This is a separation principle for the finite horizon quadratic optimal control problem for continuous-time Markovian jump linear systems. For the case in which the matrices are all time-invariant we analyze the asymptotic behavior of the solution of the derived interconnected Riccati differential equations to the solution of the associated set of coupled algebraic Riccati equations as well as the mean square stabilizing property of this limiting solution. When there is only one mode of operation our results coincide with the traditional ones for the LQG control of continuous-time linear systems.
Resumo:
Electromagnetic suspension systems are inherently nonlinear and often face hardware limitation when digitally controlled. The main contributions of this paper are: the design of a nonlinear H(infinity) controller. including dynamic weighting functions, applied to a large gap electromagnetic suspension system and the presentation of a procedure to implement this controller on a fixed-point DSP, through a methodology able to translate a floating-point algorithm into a fixed-point algorithm by using l(infinity) norm minimization due to conversion error. Experimental results are also presented, in which the performance of the nonlinear controller is evaluated specifically in the initial suspension phase. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Phase-locked loops (PLLs) are widely used in applications related to control systems and telecommunication networks. Here we show that a single-chain master-slave network of third-order PLLs can exhibit stationary, periodic and chaotic behaviors, when the value of a single parameter is varied. Hopf, period-doubling and saddle-saddle bifurcations are found. Chaos appears in dissipative and non-dissipative conditions. Thus, chaotic behaviors with distinct dynamical features can be generated. A way of encoding binary messages using such a chaos-based communication system is suggested. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we deal with a generalized multi-period mean-variance portfolio selection problem with market parameters Subject to Markov random regime switchings. Problems of this kind have been recently considered in the literature for control over bankruptcy, for cases in which there are no jumps in market parameters (see [Zhu, S. S., Li, D., & Wang, S. Y. (2004). Risk control over bankruptcy in dynamic portfolio selection: A generalized mean variance formulation. IEEE Transactions on Automatic Control, 49, 447-457]). We present necessary and Sufficient conditions for obtaining an optimal control policy for this Markovian generalized multi-period meal-variance problem, based on a set of interconnected Riccati difference equations, and oil a set of other recursive equations. Some closed formulas are also derived for two special cases, extending some previous results in the literature. We apply the results to a numerical example with real data for Fisk control over bankruptcy Ill a dynamic portfolio selection problem with Markov jumps selection problem. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
For the first time, we introduce and study some mathematical properties of the Kumaraswamy Weibull distribution that is a quite flexible model in analyzing positive data. It contains as special sub-models the exponentiated Weibull, exponentiated Rayleigh, exponentiated exponential, Weibull and also the new Kumaraswamy exponential distribution. We provide explicit expressions for the moments and moment generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, reliability and Renyi entropy. The moments of the order statistics are calculated. We also discuss the estimation of the parameters by maximum likelihood. We obtain the expected information matrix. We provide applications involving two real data sets on failure times. Finally, some multivariate generalizations of the Kumaraswamy Weibull distribution are discussed. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
To attend and obtain the systems and. internal controls mechanisms proposed by Sarbanes-Oxley certifications is actually a big challenge,for most of the multinational companies registered in SEC (US Securities and Exchange Commission). This work has the objective of contributing to the analysis of this methodology, not only to attend the law but to reduce cost and generate value through the strengthen of the internal control systems, turning them into animating value generation process mechanisms. So, the idea is to identify the main gaps in the theory through the literature revision and a case study in order to put a question to the main deficiencies, strong points or contributions through the evaluation of the noticed practices. Finally, we can say that a a result of the research and the analyses made in. this case, the vast majority of executives and other employees recognize the benefit that Sarbanes-Oxley Act has brought to the company searched. Also recognize that, although there is still necessity for systemic adequacy and infrastructure, it helps and reinforce reducing and controlling the risks. the system of internal controls in all areas of expertise. They approach and understand that there is the need for a change in the other employees` culture to be inserted in the day-today routine as internal controls, attention to Sarbanes-Oxley and Corporate Governance, making the control cost smaller when compared to the benefits generated.
Resumo:
The paper considers the existence and uniqueness of almost automorphic mild solutions to some classes of first-order partial neutral functional-differential equations. Sufficient conditions for the existence and uniqueness of almost automorphic mild solutions to the above-mentioned equations are obtained. As an application, a first-order boundary value problem arising in control systems is considered. (C) 2007 Elsevier Ltd. All fights reserved.
Resumo:
The protozoan parasite Leishmania presents a dynamic and plastic genome in which gene amplification and chromosome translocations are common phenomena. Such plasticity hints at the necessity of dependable genome maintenance pathways. Eukaryotic cells have evolved checkpoint control systems that recognize altered DNA structures and halt cell cycle progression allowing DNA repair to take place. In these cells, the PCNA-related heterotrimeric complex formed by the proteins Hus1, Rad9, and Rad1 is known to participate in the early steps of replicative stress sensing and signaling. Here we show that the Hus1 homolog of Leishmania major is a nuclear protein that improves the cell capability to cope with replicative stress. Overexpression of LmHus1 confers resistance to the genotoxic drugs hydroxyurea (HU) and methyl methanesulfonate (MMS) and resistance to HU correlates to reduced net DNA damage upon LmHus1 expression. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A novel technique for selecting the poles of orthonormal basis functions (OBF) in Volterra models of any order is presented. It is well-known that the usual large number of parameters required to describe the Volterra kernels can be significantly reduced by representing each kernel using an appropriate basis of orthonormal functions. Such a representation results in the so-called OBF Volterra model, which has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a nonlinear static mapping given by the Volterra polynomial series. Aiming at optimizing the poles that fully parameterize the orthonormal bases, the exact gradients of the outputs of the orthonormal filters with respect to their poles are computed analytically by using a back-propagation-through-time technique. The expressions relative to the Kautz basis and to generalized orthonormal bases of functions (GOBF) are addressed; the ones related to the Laguerre basis follow straightforwardly as a particular case. The main innovation here is that the dynamic nature of the OBF filters is fully considered in the gradient computations. These gradients provide exact search directions for optimizing the poles of a given orthonormal basis. Such search directions can, in turn, be used as part of an optimization procedure to locate the minimum of a cost-function that takes into account the error of estimation of the system output. The Levenberg-Marquardt algorithm is adopted here as the optimization procedure. Unlike previous related work, the proposed approach relies solely on input-output data measured from the system to be modeled, i.e., no information about the Volterra kernels is required. Examples are presented to illustrate the application of this approach to the modeling of dynamic systems, including a real magnetic levitation system with nonlinear oscillatory behavior.
Resumo:
Two fundamental processes usually arise in the production planning of many industries. The first one consists of deciding how many final products of each type have to be produced in each period of a planning horizon, the well-known lot sizing problem. The other process consists of cutting raw materials in stock in order to produce smaller parts used in the assembly of final products, the well-studied cutting stock problem. In this paper the decision variables of these two problems are dependent of each other in order to obtain a global optimum solution. Setups that are typically present in lot sizing problems are relaxed together with integer frequencies of cutting patterns in the cutting problem. Therefore, a large scale linear optimizations problem arises, which is exactly solved by a column generated technique. It is worth noting that this new combined problem still takes the trade-off between storage costs (for final products and the parts) and trim losses (in the cutting process). We present some sets of computational tests, analyzed over three different scenarios. These results show that, by combining the problems and using an exact method, it is possible to obtain significant gains when compared to the usual industrial practice, which solve them in sequence. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
Mutation testing has been used to assess the quality of test case suites by analyzing the ability in distinguishing the artifact under testing from a set of alternative artifacts, the so-called mutants. The mutants are generated from the artifact under testing by applying a set of mutant operators, which produce artifacts with simple syntactical differences. The mutant operators are usually based on typical errors that occur during the software development and can be related to a fault model. In this paper, we propose a language-named MuDeL (MUtant DEfinition Language)-for the definition of mutant operators, aiming not only at automating the mutant generation, but also at providing precision and formality to the operator definition. The proposed language is based on concepts from transformational and logical programming paradigms, as well as from context-free grammar theory. Denotational semantics formal framework is employed to define the semantics of the MuDeL language. We also describe a system-named mudelgen-developed to support the use of this language. An executable representation of the denotational semantics of the language is used to check the correctness of the implementation of mudelgen. At the very end, a mutant generator module is produced, which can be incorporated into a specific mutant tool/environment. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we study binary differential equations a(x, y)dy (2) + 2b(x, y) dx dy + c(x, y)dx (2) = 0, where a, b, and c are real analytic functions. Following the geometric approach of Bruce and Tari in their work on multiplicity of implicit differential equations, we introduce a definition of the index for this class of equations that coincides with the classical Hopf`s definition for positive binary differential equations. Our results also apply to implicit differential equations F(x, y, p) = 0, where F is an analytic function, p = dy/dx, F (p) = 0, and F (pp) not equal aEuro parts per thousand 0 at the singular point. For these equations, we relate the index of the equation at the singular point with the index of the gradient of F and index of the 1-form omega = dy -aEuro parts per thousand pdx defined on the singular surface F = 0.
Resumo:
Usually, a Petri net is applied as an RFID model tool. This paper, otherwise, presents another approach to the Petri net concerning RFID systems. This approach, called elementary Petri net inside an RFID distributed database, or PNRD, is the first step to improve RFID and control systems integration, based on a formal data structure to identify and update the product state in real-time process execution, allowing automatic discovery of unexpected events during tag data capture. There are two main features in this approach: to use RFID tags as the object process expected database and last product state identification; and to apply Petri net analysis to automatically update the last product state registry during reader data capture. RFID reader data capture can be viewed, in Petri nets, as a direct analysis of locality for a specific transition that holds in a specific workflow. Following this direction, RFID readers storage Petri net control vector list related to each tag id is expected to be perceived. This paper presents PNRD cornerstones and a PNRD implementation example in software called DEMIS Distributed Environment in Manufacturing Information Systems.