94 resultados para Calcitonin-like receptor
Resumo:
Carraro-Lacroix LR, Malnic G, Girardi AC. Regulation of Na(+)/H(+) exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells. Am J Physiol Renal Physiol 297: F1647-F1655, 2009. First published September 23, 2009; doi:10.1152/ajprenal.00082.2009.-The gut incretin hormone glucagon-like peptide 1 (GLP-1) is released in response to ingested nutrients and enhances insulin secretion. In addition to its insulinotropic properties, GLP-1 has been shown to have natriuretic actions paralleled by a diminished proton secretion. We therefore studied the role of the GLP-1 receptor agonist exendin-4 in modulating the activity of Na(+)/H(+) exchanger NHE3 in LLC-PK(1) cells. We found that NHE3-mediated Na(+)-dependent intracellular pH (pH(i)) recovery decreased similar to 50% after 30-min treatment with 1 nM exendin-4. Pharmacological inhibitors and cAMP analogs that selectively activate protein kinase A (PKA) or the exchange protein directly activated by cAMP (EPAC) demonstrated that regulation of NHE3 activity by exendin-4 requires activation of both cAMP downstream effectors. This conclusion was based on the following observations: 1) the PKA antagonist H-89 completely prevented the effect of the PKA activator but only partially blocked the exendin-4-induced NHE3 inhibition; 2) the MEK1/2 inhibitor U-0126 abolished the effect of the EPAC activator but only diminished the exendin-4-induced NHE3 inhibition; 3) combination of H-89 and U-0126 fully prevented the effect of exendin-4 on NHE3; 4) no additive effect in the inhibition of NHE3 activity was observed when exendin-4, PKA, and EPAC activators were used together. Mechanistically, the inhibitory effect of exendin-4 on pHi recovery was associated with an increase of NHE3 phosphorylation. Conversely, this inhibition took place without changes in the surface expression of the transporter. We conclude that GLP-1 receptor agonists modulate sodium homeostasis in the kidney, most likely by affecting NHE3 activity.
Resumo:
Previous studies showed anabolic effects of GC-1, a triiodothyronine (T3) analogue that is selective for both binding and activation functions of thyroid hormone receptor (TR) beta 1 over TR alpha 1, on bone tissue in vivo. The aim of this study was to investigate the responsiveness of rat (ROS17/2.8) and mouse (MC3T3-E1) osteoblast-like cells to GC-1. As expected, T3 inhibited cellular proliferation and stimulated mRNA expression of osteocalcin or alkaline phosphatase in both cell lineages. Whereas equimolar doses of T3 and GC-1 equally affected these parameters in ROS17/2.8 cells, the effects of GC-1 were more modest compared to those of T3 in MC3T3-E1 cells. Interestingly, we showed that there is higher expression of TR alpha 1 than TR beta 1 mRNA in rat (similar to 20-90%) and mouse (similar to 90-98%) cell lineages and that this difference is even higher in mouse cells, which highlights the importance of TR alpha 1 to bone physiology and may partially explain the modest effects of GC-1 in comparison with T3 in MC3T3-E1 cells. Nevertheless, we showed that TR beta 1 mRNA expression increases (similar to 2.8- to 4.3-fold) as osteoblastic cells undergo maturation, suggesting a key role of TR beta 1 in mediating T3 effects in the bone forming cells, especially in mature osteoblasts. It is noteworthy that T3 and GC-1 induced TR beta 1 mRNA expression to a similar extent in both cell lineages (similar to 2- to 4-fold), indicating that both ligands may modulate the responsiveness of osteoblasts to T3. Taken together, these data show that TR beta selective T3 analogues have the potential to directly induce the differentiation and activity of osteoblasts.
Resumo:
Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease of human and veterinary concern. The identification of novel proteins that mediate host-pathogen interactions is important for understanding the bacterial pathogenesis as well as to identify protective antigens that would help fight the disease. We describe in this work the cloning, expression, purification and characterization of three predicted leptospiral membrane proteins, LIC10258, LIC12880 (Lp30) and LIC12238. We have employed Escherichia coli BL21 (SI) strain as a host expression system. Recently, we have identified LIC12238 as a plasminogen (PLG)-binding receptor. We show now that Lp30 and rLIC10258 are also PLG-receptors of Leptospira, both exhibiting dose-dependent and saturating binding (K(D), 68.8 +/- 25.2 nM and 167.39 +/- 60.1 nM, for rLIC10258 and rLIC12880, respectively). In addition, LIC10258, which is a novel OmpA-like protein, binds laminin and plasma fibronectin ECM molecules and hence, it was named Lsa66 (Leptospiral surface adhesin of 66 kDa). Binding of Lsa66 to ECM components was determined to be specific, dose-dependent and saturable, with a KD of 55.4 +/- 15.9 nM to laminin and of 290.8 +/- 11.8 nM to plasma fibronectin. Binding of the recombinant proteins to PLG or ECM components was assessed by using antibodies against each of the recombinant proteins obtained in mice and confirmed by monoclonal anti-polyhistidine antibodies. Lsa66 caused partial inhibition on leptospiral adherence to immobilized ECM and PLG. Moreover, this adhesin and rLIC12238 are recognized by antibodies in serum samples of confirmed leptospirosis cases. Thus, Lsa66 is a novel OmpA-like protein with dual activity that may promote the attachment of Leptospira to host tissues and may contribute to the leptospiral invasion. To our knowledge, this is the first leptospiral protein with ECM and PLG binding properties reported to date.
Neospora caninum excreted/secreted antigens trigger CC-chemokine receptor 5-dependent cell migration
Resumo:
Neospora caninum, the causative agent of neosporosis, is an obligate intracellular parasite considered to be a major cause of abortion in cattle throughout the world. Most studies concerning N. caninum have focused on life cycle, seroepidemiology, pathology and vaccination, while data on host-parasite interaction, such as host cell migration, mechanisms of evasion and dissemination of this parasite during the early phase of infection are still poorly understood. Here we show the ability of excreted/secreted antigens from N. caninum (NcESAs) to attract monocytic cells to the site of primary infection in both in vitro and in vivo assays. Molecules from the family of cyclophilins present on the NcESAs were shown to work as chemokine-like proteins and NcESA-induced chemoattraction involved G(i) protein signaling and participation of CC-chemokine receptor 5 (CCR5). Additionally, we demonstrate the ability of NcESAs to enhance the expression of CCR5 on monocytic cells and this increase occurred in parallel with the chemotactic activity of NcESAs by increasing cell migration. These results suggest that during the first days of infection, N. caninum produces molecules capable of inducing monocytic cell migration to the sites of infection, which will consequently enhance initial parasite invasion and proliferation. Altogether, these results help to clarify some key features involved in the process of cell migration and may reveal virulence factors and therapeutic targets to control neosporosis. (C) 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Chromoblastomycosis is a chronic skin infection caused by the fungus Fonsecaea pedrosoi. Exploring the reasons underlying the chronic nature of F. pedrosoi infection in a murine model of chromoblastomycosis, we find that chronicity develops due to a lack of pattern recognition receptor (PRR) costimulation. F. pedrosoi was recognized primarily by C-type lectin receptors (CLRs), but not by Toll-like receptors (TLRs), which resulted in the defective induction of proinflammatory cytokines. Inflammatory responses to F. pedrosoi could be reinstated by TLR costimulation, but also required the CLR Mincle and signaling via the Syk/CARD9 pathway. Importantly, exogenously administering TLR ligands helped clear F. pedrosoi infection in vivo. These results demonstrate how a failure in innate recognition can result in chronic infection, highlight the importance of coordinated PRR signaling, and provide proof of the principle that exogenously applied PRR agonists can be used therapeutically.
Resumo:
Ethylene signal transduction initiates with ethylene binding at receptor proteins and terminates in a transcription cascade involving the EIN3/EIL transcription factors. Here, we have isolated four cDNAs homologs of the Arabidopsis EIN3/EIN3-like gene, MA-EILs (Musa acuminata ethylene insensitive 3-like) from banana fruit. Sequence comparison with other banana EIL gene already registered in the database led us to conclude that, at this day, at least five different genes namely MA-EIL1, MA-EIL2/AB266318, MA-EIL3/AB266319, MA-EIL4/AB266320 and AB266321 exist in banana. Phylogenetic analyses included all banana EIL genes within a same cluster consisting of rice OsEILs, a monocotyledonous plant as banana. However, MA-EIL1, MA-EIL2/AB266318, MA-EIL4/AB266320 and AB266321 on one side, and MA-EIL3/AB266319 on the other side, belong to two distant subclusters. MA-EIL mRNAs were detected in all examined banana tissues but at lower level in peel than in pulp. According to tissues, MA-EIL genes were differentially regulated by ripening and ethylene in mature green fruit and wounding in old and young leaves. MA-EIL2/AB266318 was the unique ripening- and ethylene-induced gene; MA-EIL1, MA-EIL4/Ab266320 and AB266321 genes were downregulated, while MA-EIL3/AB266319 presented an unusual pattern of expression. Interestingly, a marked change was observed mainly in MA-EIL1 and MA-EIL3/Ab266319 mRNA accumulation concomitantly with changes in ethylene responsiveness of fruit. Upon wounding, the main effect was observed in MA-EIL4/AB266320 and AB266321 mRNA levels, which presented a markedly increase in both young and old leaves, respectively. Data presented in this study suggest the importance of a transcriptionally step control in the regulation of EIL genes during banana fruit ripening.
Resumo:
The present work evaluates both in vitro and in vivo antitumor activity of BPB-modified BthTX-I and its cationic synthetic peptide derived from the 115-129 C-terminal region. BPB-BthTX-1 presented cytotoxicity of 10-40% on different tumor cell lines, which were also susceptible to the lytic action of the synthetic peptide. Injection of the modified protein or the peptide in mice, 5 days after transplantation of S 180 tumor cells, reduced 30 and 36% of the tumor size on day 14th and 76 and 79% on day 60th, respectively, when compared to the untreated control group. Thus, these antitumor properties might be of interest in the development of therapeutic strategies against cancer. (C) 2009 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
Resumo:
Chronic administration of antidepressants such as fluoxetine and imipramine increases the responsiveness of 5-HT(1A) receptors in dorsal periaqueductal grey matter (DPAG), a midbrain area consistently implicated in the pathogenesis of panic disorder. This effect has been related to the clinically relevant anti-panic action of these drugs. In this study we determined whether long-term administration of fluoxetine also affects 5-HT efflux in DPAG. As a comparison, the effect of chronic treatment with the anxiolytic 5-HT(1A) receptor agonist buspirone on DPAG 5-HT levels was assessed. We also investigated whether the inhibitory effect of chronic fluoxetine on escape behaviour in the rat elevated T-maze, considered as a panicolytic-like effect, is counteracted by intra-DPAG injection of the 5-HT(1A) receptor antagonist WAY 100635. Male Wistar rats were treated (1 or 21 d, i.p.) with fluoxetine, buspirone or vehicle, once daily. After treatment, 5-HT in DPAG was measured by in-vivo microdialysis coupled to HPLC. In another study, rats treated (21 d, i.p.) with either fluoxetine or vehicle also received intra-DPAG injection of WAY 100635 or saline 10 min before being tested in the elevated T-maze. Chronic, but not acute, administration of fluoxetine significantly raised extracellular levels of 5-HT in DPAG. Long-term treatment with buspirone was ineffective. In the elevated T-maze, intra-DPAG injection of WAY 100635 fully blocked the anti-escape effect of chronic administration of fluoxetine. Therefore, chronic fluoxetine facilitates 5-HT(1A)-mediated neurotransmission within DPAG and this effect accounts for the panicolytic-like effect of this antidepressant in the elevated T-maze.
Resumo:
The beta-adrenergic blocker and 5-HT(1A) receptor antagonist pindolol has been combined with selective serotonin reuptake inhibitors (SSRIs) in patients with depressive and anxiety disorders to shorten the onset of the clinical action and/or increase the proportion of responders. The results of a previous study have shown that pindolol potentiates the panicolytic effect of paroxetine in rats submitted to the elevated T-maze (ETM). Since reported evidence has implicated the 5-HT(1A) receptors of the dorsal periaqueductal gray matter (DPAG) in the panicolytic effect of antidepressants, rats treated with pindolol (5.0 mg/kg, i.p.) and paroxetine (1.5 mg/kg, i.p.) received a previous intra-DPAG injection of the selective 5-HT(1A) antagonist, WAY-100635 (0.4 mu g) and were submitted to the ETM. Pretreatment with WAY-100635 reversed the increase in escape latency, a panicolytic effect, determined by the pindolol-paroxetine combination. These results implicate the 5-HT(1A) receptors of the DPAG in the panicolytic effect of the pindolol-paroxetine combination administered systemically. They also give further preclinical support for the use of this drug combination in the treatment of panic disorder. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Purpose We evaluated the involvement of angiotensin II (AngII)-dependent pathways in melanoma growth, through the pharmacological blockage of AT1 receptor by the antihypertensive drug losartan (LOS). Results We showed immunolabeling for both AngII and the AT1 receptor within the human melanoma microenvironment. Like human melanomas, we showed that murine melanomas also express the AT1 receptor. Growth of murine melanoma, both locally and at distant sites, was limited in mice treated with LOS. The reduction in tumor growth was accompanied by a twofold decrease in tumorassociated microvessel density and by a decrease in CD31 mRNA levels. While no differences were found in the VEGF expression levels in tumors from treated animals, reduction in the expression of the VEGFR1 (Flt-1) at the mRNA and protein levels was observed. We also showed downregulation of mRNA levels of both Flt-4 and its ligand, VEGF-C. Conclusions Together, these results show that blockage of AT1 receptor signaling may be a promising anti-tumor strategy, interfering with angiogenesis by decreasing the expression of angiogenic factor receptors.
Resumo:
The PKC apoptosis WTI regulator gene, also named prostate apoptosis response-4 (PAR-4), encodes a pro-apoptotic protein that sensitizes cells to numerous apoptotic stimuli. Insulin-like growth factor-1 (IGF-1) and 17 beta-estradiol (E2), two important factors for breast cancer development and progression, have been shown to down-regulate PAR-4 expression and inhibit apoptosis induced by PAR-4 in neuronal cells. In this study, we sought to investigate the mechanisms of regulation of PAR-4 gene expression in MCF-7 cells treated with E2 or IGF-1. E2 (10 nM) and IGF-1 (12.5 nM) each down-regulated PAR-4 expression in MCF-7 cells after 24 h of treatment. The effect of E2 was dependent on ER activation, as demonstrated by an increase in PAR-4 expression when cells were pretreated for 1 h with 1 mu M ICI-182,780 (ICI) before receiving E2 plus ICI. The effect of IGF-1 was abolished by pre-treatment for 1 h with 30 mu M LY294002 (a specific PI3-K inhibitor), and significantly inhibited by 30 mu M SB202190 (a specific p38MAPK inhibitor). We also demonstrated that E2 acts synergistically with IGF-1, resulting in greater down-regulation of PAR-4 mRNA expression compared with E2 or IGF-1 alone. Our results show for the first time that E2 and IGF-1 inhibit PAR-4 gene expression in MCF-7 cells, suggesting that this down-regulation may provide a selective advantage for breast cancer cell survival.
Resumo:
TRAPS is the most common of the autosomal dominant periodic fever syndromes. It is caused by mutations in the TNFRSF1A gene, which encodes for the type 1 TNF-receptor (TNFR1). We describe here a Brazilian patient with TRAPS associated to a novel TNFRSF1A de novo mutation and the response to anti-TNF therapy. The patient is a 9-year-old girl with recurrent fevers since the age of 3 years, usually lasting 3 to 7 days, and recurring every other week. These episodes are associated with mild abdominal pain, nausea, vomiting and generalized myalgia. Recurrent conjunctivitis and erysipela-like skin lesions in the lower limbs also occur. Laboratory studies show persistent normocytic normochromic anemia, thrombocytosis, elevated erythrocyte sedimentation rate and C-reactive protein. IgD levels are normal. Mutational screening of TNFRSF1A revealed the association of a novel C30F mutation with the common R92Q low-penetrance mutation. The R92Q mutation is seen in 5% of the general population and is associated with an atypical inflammatory phenotype. The patient had a very good response to etanercept, with cessation of fever and normalization of inflammatory markers. Our report expands the spectrum of TNFRSF1A mutations associated with TRAPS, adding further evidence for possible additive effects of a low-penetration R92Q and cysteine residue mutations, and confirms etanercept as an efficacious treatment alternative.
Resumo:
Crajoinas RO, Oricchio FT, Pessoa TD, Pacheco BP, Lessa LM, Malnic G, Girardi AC. Mechanisms mediating the diuretic and natriuretic actions of the incretin hormone glucagon-like peptide-1. Am J Physiol Renal Physiol 301: F355-F363, 2011. First published May 18, 2011; doi: 10.1152/ajprenal.00729.2010.-Glucagon-like peptide-1 (GLP-1) is a gut incretin hormone considered a promising therapeutic agent for type 2 diabetes because it stimulates beta cell proliferation and insulin secretion in a glucose-dependent manner. Cumulative evidence supports a role for GLP-1 in modulating renal function; however, the mechanisms by which GLP-1 induces diuresis and natriuresis have not been completely established. This study aimed to define the cellular and molecular mechanisms mediating the renal effects of GLP-1. GLP-1 (1 mu g.kg(-1).min(-1)) was intravenously administered in rats for the period of 60 min. GLP-1-infused rats displayed increased urine flow, fractional excretion of sodium, potassium, and bicarbonate compared with those rats that received vehicle (1% BSA/saline). GLP-1-induced diuresis and natriuresis were also accompanied by increases in renal plasma flow and glomerular filtration rate. Real-time RT-PCR in microdissected rat nephron segments revealed that GLP-1 receptor-mRNA expression was restricted to glomerulus and proximal convoluted tubule. In rat renal proximal tubule, GLP-1 significantly reduced Na(+)/H(+) exchanger isoform 3 (NHE3)-mediated bicarbonate reabsorption via a protein kinase A (PKA)-dependent mechanism. Reduced proximal tubular bicarbonate flux rate was associated with a significant increase of NHE3 phosphorylation at the PKA consensus sites in microvillus membrane vesicles. Taken together, these data suggest that GLP-1 has diuretic and natriuretic effects that are mediated by changes in renal hemodynamics and by downregulation of NHE3 activity in the renal proximal tubule. Moreover, our findings support the view that GLP-1-based agents may have a potential therapeutic use not only as antidiabetic drugs but also in hypertension and other disorders of sodium retention.
Resumo:
The macro phage-derived neutrophil chemotactic factor (MNCF) is an alpha-galactoside-binding lectin, known to induce dexamethasone-insensitive neutrophil recruitment. We further characterized MNCF effects on neutrophils and showed that it shares with TNF-alpha the ability to delay apoptosis and to trigger degranulation. MNCF and TNF-alpha effects show similar kinetics and involve Src kinases and MAPKinases dependent pathways. They were, however, clearly distinguished, since the soluble TNF-receptor etanercept prevented TNF but not MNCF effects, while melibiose disaccharide inhibited MNCF but not TNF effects. Absorption of MNCF on detoxi-gel did not alter its properties, precluding an LPS contamination effect. By contrast, galectin-3 required LPS to activate neutrophils. Specific antibodies allowed to further demonstrate that MNCF and galectin-3 are two distinct molecules. Finally, MNCF- and IL-8-induced neutrophil activation differed by their kinetic and sensitivity to pertussis toxin. In conclusion, MNCF is a distinct neutrophil agonist, with pro-inflammatory activities involving its carbohydrate recognition domain. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The insulin/insulin-like signaling (IIS) pathway is an evolutionarily conserved module in the control of body size and correlated organ growth in metazoans. In the highly eusocial bees, the caste phenotypes differ not only in size and several structural features but also in individual fitness and life history. We investigated the developmental expression profiles of genes encoding the two insulin-like peptides (AmILP-1 and AmILP-2) and the two insulin receptors (AmInR-1 and AmInR-2) predicted in the honey bee genome. Quantitative PCR analysis for queen and worker larvae in critical stages of caste development showed that AmILP-2 is the predominantly transcribed ILP in both castes, with higher expression in workers than in queens. Expression of both InR genes sharply declined in fourth instar queen larvae, but showed little modulation in workers. On first sight, these findings are non-intuitive, considering the higher growth rates of queens, but they can be interpreted as possibly antagonistic crosstalk between the IIS module and juvenile hormone. Analyzing AmInR-1 and AmInR-2 expression in ovaries of queen and worker larvae revealed low transcript levels in queens and a sharp drop in AmInR-2 expression in fifth instar worker larvae, indicating relative independence in tissue-specific versus overall IIS pathway activity. (C) 2008 Elsevier Ltd. All rights reserved.