81 resultados para CMC (Comunication Mediated by Computer)
Resumo:
O-GlcNAcylation augments vascular contractile responses, and O-GlcNAc-proteins are increased in the vasculature of deoxycorticosterone-acetate salt rats. Because endothelin 1 (ET-1) plays a major role in vascular dysfunction associated with salt-sensitive forms of hypertension, we hypothesized that ET-1-induced changes in vascular contractile responses are mediated by O-GlcNAc modification of proteins. Incubation of rat aortas with ET-1 (0.1 mu mol/L) produced a time-dependent increase in O-GlcNAc levels and decreased expression of O-GlcNAc transferase and beta-N-acetylglucosaminidase, key enzymes in the O-GlcNAcylation process. Overnight treatment of aortas with ET-1 increased phenylephrine vasoconstriction (maximal effect [in moles]: 19 +/- 5 versus 11 +/- 2 vehicle). ET-1 effects were not observed when vessels were previously instilled with anti-O-GlcNAc transferase antibody or after incubation with an O-GlcNAc transferase inhibitor (3-[2-adamantanylethyl]-2-[{4-chlorophenyl}azamethylene]-4-oxo-1,3-thiazaperhyd roine-6-carboxylic acid; 100 mu mol/L). Aortas from deoxycorticosterone-acetate salt rats, which exhibit increased prepro-ET-1, displayed increased contractions to phenylephrine and augmented levels of O-GlcNAc proteins. Treatment of deoxycorticosterone-acetate salt rats with an endothelin A antagonist abrogated augmented vascular levels of O-GlcNAc and prevented increased phenylephrine vasoconstriction. Aortas from rats chronically infused with low doses of ET-1 (2 pmol/kg per minute) exhibited increased O-GlcNAc proteins and enhanced phenylephrine responses (maximal effect [in moles]: 18 +/- 2 versus 10 +/- 3 control). These changes are similar to those induced by O-(2-acetamido-2-deoxy-D-glucopyranosylidene) amino-N-phenylcarbamate, an inhibitor of beta-N-acetylglucosaminidase. Systolic blood pressure (in millimeters of mercury) was similar between control and ET-1-infused rats (117 +/- 3 versus 123 +/- 4 mm Hg; respectively). We conclude that ET-1 indeed augments O-GlcNAc levels and that this modification contributes to the vascular changes induced by this peptide. Increased vascular O-GlcNAcylation by ET-1 may represent a mechanism for hypertension-associated vascular dysfunction or other pathological conditions associated with increased levels of ET-1. (Hypertension. 2010; 55: 180-188.)
Resumo:
Introduction: Cytolethal distending toxin (CDT) is a DNA-targeting agent produced by certain pathogenic gram-negative bacteria such as the periodontopathogenic organism Aggregatibacter actinomycetemcomitans. CDT targets lymphocytes and other cells causing cell cycle arrest and apoptosis, impairing the host immune response and contributing to the persistence of infections caused by this microorganism. In this study we explored the effects of CDT on the innate immune response, by investigating how it affects production of nitric oxide (NO) by macrophages. Methods: Murine peritoneal macrophages were stimulated with Escherichia coli sonicates and NO production was measured in the presence or not of active CDT. Results: We observed that CDT promptly and significantly inhibited NO production by inducible nitric oxide synthase (iNOS) in a dose-dependent manner. This inhibition is directed towards interferon-gamma-dependent pathways and is not mediated by either interleukin-4 or interleukin-10. Conclusion: This mechanism may constitute an important aspect of the immunosuppression mediated by CDT and may have potential clinical implications in A. actinomycetemcomitans infections.
Resumo:
All-trans-retinoic acid (atRA) appears to affect Th1-Th2 differentiation and its effects on immune responses might also be mediated by dendritic cell (DC). Nonetheless, studies have been showing contradictory results since was observed either induction or inhibition of DC differentiation. Our aim was to investigate atRA action on human monocyte derived DC differentiation. For this purpose we tested pharmacological and physiological doses of atRA with or without cytokines. Cell phenotypes were analyzed by flow cytometry and function was investigated by phagocytosis and respiratory burst. DC, positive control group, was differentiated with GM-CSF and IL-4 and maturated with TNF-alpha. We demonstrated that atRA effects depend on the dose used as pharmacological doses inhibited expression of all phenotypic markers tested while a physiological dose caused cell differentiation. However, atRA combined or not with cytokines did not promote DC differentiation. In fact, atRA was detrimental on IL-4 property as a DC inductor. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The authors present here a summary of their investigations of ultrathin films formed by gold nanoclusters embedded in polymethylmethacrylate polymer. The clusters are formed from the self-organization of subplantated gold ions in the polymer. The source of the low energy ion stream used for the subplantation is a unidirectionally drifting gold plasma created by a magnetically filtered vacuum arc plasma gun. The material properties change according to subplantation dose, including nanocluster sizes and agglomeration state and, consequently also the material electrical behavior and optical activity. They have investigated the composite experimentally and by computer simulation in order to better understand the self-organization and the properties of the material. They present here the results of conductivity measurements and percolation behavior, dynamic TRIM simulations, surface plasmon resonance activity, transmission electron microscopy, small angle x-ray scattering, atomic force microscopy, and scanning tunneling microscopy. (C) 2010 American Vacuum Society [DOI: 10.1116/1.3357287]
Resumo:
The control of size and shape of metallic nanoparticles is a fundamental goal in nanochemistry, and crucial for applications exploiting nanoscale properties of materials. We present here an approach to the synthesis of gold nanoparticles mediated by glucose oxidase (GOD) immobilized on solid substrates using the Layer-by-Layer (LbL) technique. The LbL films contained four alternated layers of chitosan and poly(styrene sulfonate) (PSS), with GOD in the uppermost bilayer adsorbed on a fifth chitosan layer: (chitosan/PSS)(4)/(chitosan/GOD). The films were inserted into a solution containing gold salt and glucose, at various pHs. Optimum conditions were achieved at pH 9, producing gold nanoparticles of ca. 30 nm according to transmission electron microscopy. A comparative study with the enzyme in solution demonstrated that the synthesis of gold nanoparticles is more efficient using immobilized GOD. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Most physiological effects of thyroid hormones are mediated by the two thyroid hormone receptor subtypes, TR alpha and TR beta. Several pharmacological effects mediated by TR beta might be beneficial in important medical conditions such as obesity, hypercholesterolemia and diabetes, and selective TR beta activation may elicit these effects while maintaining an acceptable safety profile, To understand the molecular determinants of affinity and subtype selectivity of TR ligands, we have successfully employed a ligand- and structure-guided pharmacophore-based approach to obtain the molecular alignment of a large series of thyromimetics. Statistically reliable three-dimensional quantitative structure-activity relationship (3D-QSAR) and three-dimensional quantitative structure-selectivity relationship (3D-QSSR) models were obtained using the comparative molecular field analysis (CoMFA) method, and the visual analyses of the contour maps drew attention to a number of possible opportunities for the development of analogs with improved affinity and selectivity. Furthermore, the 3D-QSSR analysis allowed the identification of a novel and previously unmentioned halogen bond, bringing new insights to the mechanism of activity and selectivity of thyromimetics.
Resumo:
Peroxiredoxins are receiving increasing attention as defenders against oxidative damage and sensors of hydrogen peroxide-mediated signaling events. In the yeast Saccharomyces cerevisiae, deletion of one or more isoforms of the peroxiredoxins is not lethal but compromises genome stability by mechanisms that remain under scrutiny. Here, we show that cytosolic peroxiredoxin-null cells (tsa1 Delta tsa2 Delta) are more resistant to hydrogen peroxide than wildtype (WT) cells and consume it faster under fermentative conditions. Also, tsa1 Delta tsa2 Delta cells produced higher yields of the 1-hydroxyethyl radical from oxidation of the glucose metabolite ethanol, as proved by spin-trapping experiments. A major role for Fenton chemistry in radical formation was excluded by comparing WT and tsa1 Delta tsa2 Delta cells with respect to their levels of total and chelatable metal ions and of radical produced in the presence of chelators. The main route for 1-hydroxyethyl radical formation was ascribed to the peroxidase activity of Cu, Zn-superoxide dismutase (Sod1), whose expression and activity increased similar to 5- and 2-fold, respectively, in tsa1 Delta tsa2 Delta compared with WT cells. Accordingly, overexpression of human Sod1 in WT yeasts led to increased 1-hydroxyethyl radical production. Relevantly, tsa1 Delta tsa2 Delta cells challenged with hydrogen peroxide contained higher levels of DNA-derived radicals and adducts as monitored by immuno-spin trapping and incorporation of (14)C from glucose into DNA, respectively. The results indicate that part of hydrogen peroxide consumption by tsa1 Delta tsa2 Delta cells is mediated by induced Sod1, which oxidizes ethanol to the 1-hydroxyethyl radical, which, in turn, leads to increased DNA damage. Overall, our studies provide a pathway to account for the hypermutability of peroxiredoxin-null strains.
Resumo:
Incomplete and/or sluggish maltotriose fermentation causes both quality and economic problems in the ale-brewing industry. Although it has been proposed previously that the sugar uptake must be responsible for these undesirable phenotypes, there have been conflicting reports on whether all the known alpha-glucoside transporters in Saccharomyces cerevisiae (MALx1, AGT1, and MPH2 and MPH3 transporters) allow efficient maltotriose utilization by yeast cells. We characterized the kinetics of yeast cell growth, sugar consumption, and ethanol production during maltose or maltotriose utilization by several S. cerevisiae yeast strains (both MAL constitutive and AM inducible) and by their isogenic counterparts with specific deletions of the AGT1 gene. Our results clearly showed that yeast strains carrying functional permeases encoded by the MAL21, MAL31, and/or MAL41 gene in their plasma membranes were unable to utilize maltotriose. While both high-and low-affinity transport activities were responsible for maltose uptake from the medium, in the case of maltotriose, the only low-affinity (K-m, 36 +/- 2 mM) transport activity was mediated by the AGT1 permease. In conclusion, the AGT1 transporter is required for efficient maltotriose fermentation by S. cerevisiae yeasts, highlighting the importance of this permease for breeding and/or selection programs aimed at improving sluggish maltotriose fermentations.
Resumo:
The arterial partial pressure (P CO2) of carbon dioxide is virtually constant because of the close match between the metabolic production of this gas and its excretion via breathing. Blood gas homeostasis does not rely solely on changes in lung ventilation, but also to a considerable extent on circulatory adjustments that regulate the transport of CO2 from its sites of production to the lungs. The neural mechanisms that coordinate circulatory and ventilatory changes to achieve blood gas homeostasis are the subject of this review. Emphasis will be placed on the control of sympathetic outflow by central chemoreceptors. High levels of CO2 exert an excitatory effect on sympathetic outflow that is mediated by specialized chemoreceptors such as the neurons located in the retrotrapezoid region. In addition, high CO2 causes an aversive awareness in conscious animals, activating wake-promoting pathways such as the noradrenergic neurons. These neuronal groups, which may also be directly activated by brain acidification, have projections that contribute to the CO2-induced rise in breathing and sympathetic outflow. However, since the level of activity of the retrotrapezoid nucleus is regulated by converging inputs from wake-promoting systems, behavior-specific inputs from higher centers and by chemical drive, the main focus of the present manuscript is to review the contribution of central chemoreceptors to the control of autonomic and respiratory mechanisms.
Resumo:
Embora o hormônio do crescimento (GH) seja um dos hormônios mais estudados, vários de seus aspectos fisiológicos ainda não estão integralmente esclarecidos, incluindo sua relação com o exercício físico. Estudos mais recentes têm aumentado o conhecimento a respeito dos mecanismos de ação do GH, podendo ser divididos em: 1) ações diretas, mediadas pela rede de sinalizações intracelulares, desencadeadas pela ligação do GH ao seu receptor na membrana plasmática; e 2) ações indiretas, mediadas principalmente pela regulação da síntese dos fatores de crescimento semelhantes à insulina (IGF). Tem sido demonstrado que o exercício físico é um potente estimulador da liberação do GH. A magnitude deste aumento sofre influência de diversos fatores, em especial, da intensidade e do volume do exercício, além do estado de treinamento. Atletas, normalmente, apresentam menor liberação de GH induzida pelo exercício que indivíduos sedentários ou pouco treinados. Evidências experimentais demonstram que o GH: 1) favorece a mobilização de ácidos graxos livres do tecido adiposo para geração de energia; 2) aumenta a capacidade de oxidação de gordura e 3) aumenta o gasto energético.
Resumo:
A qualidade de luz pode alterar a morfogênese das plantas por meio de uma série de processos mediados por receptores de luz, principalmente na região do vermelho e azul. O objetivo do presente estudo foi verificar alterações anatômicas foliares e características biométricas de Cattleya loddigesii 'Tipo', cultivadas in vitro, sob diferentes malhas coloridas com nível de radiação de 50% de sombreamento. Plântulas oriundas de autopolinização e sementes germinadas in vitro, com aproximadamente 1,0cm de comprimento e com raízes, foram inoculadas em meio WPM e submetidas a diferentes condições de incubação. Testou-se o efeito de sombrites coloridos (vermelho e azul) sobre os frascos cultivados em casa de vegetação (CV) e sala de crescimento (SC), além dos tratamentos, nos dois ambientes, sem utilização das telas coloridas. A avaliação foi efetuada 180 dias após inoculação. Com os resultados obtidos, observou-se que o ambiente de cultivo promove alterações anatômicas e biométricas em plântulas de Cattleya loddigesii 'Tipo' micropropagadas. As alterações promovidas pelo cultivo em luz natural evidenciam maior capacidade fotossintética, por meio de maior diferenciação dos tecidos clorofilianos, promovendo uma superfície foliar anatomicamente adaptada à fase de aclimatização.
Resumo:
The tellurium atom in the title bis-ethynyl telluride, Te(C(9)H(7))(2) or C(18)H(14)Te, is located on a crystallographic twofold axis, the C-Te-C angle being 92.23 (15)degrees. The dihedral angle between the rings is 87.27 (7)degrees. In the crystal structure, molecules are connected in chains parallel to the b axis and mediated by C-H center dot center dot center dot pi interactions.
Resumo:
The aim of the present study was to investigate whether the perception of presentation durations of pictures of different body postures was distorted as function of the embodied movement that originally produced these postures. Participants were presented with two pictures, one with a low-arousal body posture judged to require no movement and the other with a high-arousal body posture judged to require considerable movement. In a temporal bisection task with two ranges of standard durations (0.4/1.6 s and 2/8 s), the participants had to judge whether the presentation duration of each of the pictures was more similar to the short or to the long standard duration. The results showed that the duration was judged longer for the posture requiring more movement than for the posture requiring less movement. However the magnitude of this overestimation was relatively greater for the range of short durations than for that of longer durations. Further analyses suggest that this lengthening effect was mediated by an arousal effect of limited duration on the speed of the internal clock system.
Resumo:
Background: The beneficial actions of exercise training on lipid, glucose and energy metabolism and insulin sensitivity appear to be in part mediated by PGC-1 alpha. Previous studies have shown that spontaneously exercised rats show at rest enhanced responsiveness to exogenous insulin, lower plasma insulin levels and increased skeletal muscle insulin sensitivity. This study was initiated to examine the functional interaction between exercise-induced modulation of skeletal muscle and liver PGC-1 alpha protein expression, whole body insulin sensitivity, and circulating FFA levels as a measure of whole body fatty acid (lipid) metabolism. Methods: Two groups of male Wistar rats (2 Mo of age, 188.82 +/- 2.77 g BW) were used in this study. One group consisted of control rats placed in standard laboratory cages. Exercising rats were housed individually in cages equipped with running wheels and allowed to run at their own pace for 5 weeks. At the end of exercise training, insulin sensitivity was evaluated by comparing steady-state plasma glucose (SSPG) concentrations at constant plasma insulin levels attained during the continuous infusion of glucose and insulin to each experimental group. Subsequently, soleus and plantaris muscle and liver samples were collected and quantified for PGC-1 alpha protein expression by Western blotting. Collected blood samples were analyzed for glucose, insulin and FFA concentrations. Results: Rats housed in the exercise wheel cages demonstrated almost linear increases in running activity with advancing time reaching to maximum value around 4 weeks. On an average, the rats ran a mean (Mean +/- SE) of 4.102 +/- 0.747 km/day and consumed significantly more food as compared to sedentary controls (P < 0.001) in order to meet their increased caloric requirement. Mean plasma insulin (P < 0.001) and FFA (P < 0.006) concentrations were lower in the exercise-trained rats as compared to sedentary controls. Mean steady state plasma insulin (SSPI) and glucose (SSPG) concentrations were not significantly different in sedentary control rats as compared to exercise-trained animals. Plantaris PGC-1 alpha protein expression increased significantly from a 1.11 +/- 0.12 in the sedentary rats to 1.74 +/- 0.09 in exercising rats (P < 0.001). However, exercise had no effect on PGC-1 alpha protein content in either soleus muscle or liver tissue. These results indicate that exercise training selectively up regulates the PGC-1 alpha protein expression in high-oxidative fast skeletal muscle type such as plantaris muscle. Conclusion: These data suggest that PGC-1 alpha most likely plays a restricted role in exercise-mediated improvements in insulin resistance (sensitivity) and lowering of circulating FFA levels.
Resumo:
We report the first quantitative and qualitative analysis of the poly (A)(+) transcriptome of two human mammary cell lines, differentially expressing (human epidermal growth factor receptor) an oncogene over-expressed in approximately 25% of human breast tumors. Full-length cDNA populations from the two cell lines were digested enzymatically, individually tagged according to a customized method for library construction, and simultaneously sequenced by the use of the Titanium 454-Roche-platform. Comprehensive bioinformatics analysis followed by experimental validation confirmed novel genes, splicing variants, single nucleotide polymorphisms, and gene fusions indicated by RNA-seq data from both samples. Moreover, comparative analysis showed enrichment in alternative events, especially in the exon usage category, in ERBB2 over-expressing cells, data indicating regulation of alternative splicing mediated by the oncogene. Alterations in expression levels of genes, such as LOX, ATP5L, GALNT3, and MME revealed by large-scale sequencing were confirmed between cell lines as well as in tumor specimens with different ERBB2 backgrounds. This approach was shown to be suitable for structural, quantitative, and qualitative assessment of complex transcriptomes and revealed new events mediated by ERBB2 overexpression, in addition to potential molecular targets for breast cancer that are driven by this oncogene.