85 resultados para Brain volumes
Resumo:
The human brain is often considered to be the most cognitively capable among mammalian brains and to be much larger than expected for a mammal of our body size. Although the number of neurons is generally assumed to be a determinant of computational power, and despite the widespread quotes that the human brain contains 100 billion neurons and ten times more glial cells, the absolute number of neurons and glial cells in the human brain remains unknown. Here we determine these numbers by using the isotropic fractionator and compare them with the expected values for a human-sized primate. We find that the adult male human brain contains on average 86.1 +/- 8.1 billion NeuN-positive cells (""neurons"") and 84.6 +/- 9.8 billion NeuN-negative (""nonneuronal"") cells. With only 19% of all neurons located in the cerebral cortex, greater cortical size (representing 82% of total brain mass) in humans compared with other primates does not reflect an increased relative number of cortical neurons. The ratios between glial cells and neurons in the human brain structures are similar to those found in other primates, and their numbers of cells match those expected for a primate of human proportions. These findings challenge the common view that humans stand out from other primates in their brain composition and indicate that, with regard to numbers of neuronal and nonneuronal cells, the human brain is an isometrically scaled-up primate brain. J. Comp. Neurol. 513:532-541, 2009. (c) 2009 Wiley-Liss, Inc.
Resumo:
Impulsivity is a personality trait exhibited by healthy individuals, but excessive impulsivity is associated with some mental disorders. Lesion and functional, neuroimaging Studies indicate that the ventromedial prefrontal region (VMPFC), including the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and medial prefrontal cortex, and the amygdala may modulate impulsivity and aggression. However, no morphometric study has examined the association between VMPFC and impulsivity. We hypothesized that healthy subjects with high impulsivity would have smaller volumes in these brain regions compared with those with low impulsivity. Sixty-two healthy Subjects were Studied (age 35.4 +/- 12.1 years) using a 1.5-T MRI system. The Barratt impulsiveness scale (BIS) was used to assess impulsivity. Images were processed using an optimized voxel-based morphometry (VBM) protocol. We calculated the correlations between BIS scale scores and the gray matter (GM) and white matter (WM) volumes of VMPFC and amygdala. GM volumes of the left and right OFC were inversely correlated with the BIS total score (P = 0.04 and 0.02, respectively). Left ACC GM Volumes had a tendency to be inversely correlated with the BIS total score (P = 0.05. Right OFC GM Volumes were inversely correlated with BIS nonplanning impulsivity, and left OFC GM volumes were inversely correlated with motor impulsivity. There were no significant WM volume correlations with impulsivity. The results Of this morphometry Study indicate that small OFC volume relate to high impulsivity and extend the prior finding that the VMPFC is involved in the circuit modulating impulsivity. HUM Brain Mapp 30:1188-1195, 2009. (C) 2008 Wiley-Liss, Inc.
Resumo:
Objectives: Functional and postmortem studies suggest that the orbitofrontal cortex (OFC) is involved in the pathophysiology of bipolar disorder (BD). This anatomical magnetic resonance imaging (MRI) study examined whether BD patients have smaller OFC gray matter volumes compared to healthy comparison subjects (HC). Methods: Twenty-eight BD patients were compared to 28 age- and gender-matched HC. Subjects underwent a 1.5T MRI with 3D spoiled gradient recalled acquisition. Total OFC and medial and lateral subdivisions were manually traced by a blinded examiner. Images were segmented and gray matter volumes were calculated using an automated method. Results: Analysis of covariance, with intracranial volume as covariate, showed that BD patients and HC did not differ in gray matter volumes of total OFC or its subdivisions. However, total OFC gray matter volume was significantly smaller in depressed patients (n = 10) compared to euthymic patients (n = 18). Moreover, total OFC gray matter volumes were inversely correlated with depressive symptom intensity, as assessed by the Hamilton Depression Rating Scale. OFC gray matter volumes were not related to lithium treatment, age at disease onset, number of episodes, or family history of mood disorders. Conclusions: Our results suggest that abnormal OFC gray matter volumes are not a pervasive characteristic of BD, but may be associated with specific clinical features of the disorder.
Resumo:
Background: Organs from the so-called marginal donors have been used with a significant higher risk of primary non function than organs retrieved from the optimal donors. We investigated the early metabolic changes and blood flow redistribution in splanchnic territory in an experimental model that mimics marginal brain-dead (BD) donor. Material/Methods: Ten dogs (21.3 +/- 0.9 kg), were subjected to a brain death protocol induced by subdural balloon inflation and observed for 30 min thereafter without ally additional interventions. Mean arterial and intracranial pressures, heart rate, cardiac output (CO), portal vein and hepatic artery blood flows (PVBF and HABF, ultrasonic flowprobe), and O(2)-derived variables were evaluated. Results: An increase in arterial pressure, CO, PVBF and HABF was observed after BD induction. At the end, an intense hypotension with normalization in CO (3.0 +/- 0.2 VS. 2.8 +/- 2.8 L/min) and PVBF (687 +/- 114 vs. 623 +/- 130 ml/min) was observed, whereas HABF (277 33 vs. 134 28 ml/min, p<0.005) remained lower than baseline values. Conclusions: Despite severe hypotension induced by sudden increase of intracranial pressure, the systemic and splanchnic blood flows were partially preserved without signs of severe hypoperfusion (i.e. hyperlactatemia). Additionally, the HABF was mostly negatively affected in this model of marginal BD donor. Our data suggest that not only the cardiac output, but the intrinsic hepatic microcirculatory mechanism plays a role in the hepatic blood flow control after BD.
Resumo:
Neutron activation analysis was applied to assess trace element concentrations in brain tissues from normal (n = 21) and demented individuals (n = 21) of both genders aged more than 50 years. Concentrations of the elements Br, Fe, K, Na, Rb, Se and Zn were determined. Comparisons were made between the results obtained for the hippocampus and frontal cortex tissues, as well as, those obtained in brains of normal and demented individuals. Certified reference materials, NIST 1566b Oyster Tissue and NIST 1577b Bovine Liver were analyzed for quality of the analytical results.
Resumo:
In order to investigate the differential ALCAM, ICAM-1 and VCAM-1 adhesion molecules mRNA expression and the blood-brain barrier (BBB) permeability in C57BL/6 and BALB/c mice in Toxoplasma gondii infection, animals were infected with ME-49 strain. It was observed higher ALCAM on day 9 and VCAM-1 expression on days 9 and 14 of infection in the central nervous system (CNS) of C57BL/6 compared to BALB/c mice. The expression of ICAM-1 was high and similar in the CNS of both lineages of infected mice. In addition, C57BL/6 presented higher BBB permeability and higher IFN-gamma and iNOS expression in the CNS compared to BALB/c mice. The CNS of C578L/6 mice presented elevated tissue pathology and parasitism. In conclusion, our data suggest that the higher adhesion molecules expression and higher BBB permeability contributed to the major inflammatory cell infiltration into the CNS of C57BL/6 mice that was not efficient to control the parasite. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The Golgi method has been used for over a century to describe the general morphology of neurons in the nervous system of different species. The ""single-section"" Golgi method of Gabbott and Somogyi (1984) and the modifications made by Izzo et al. (1987) are able to produce consistent results. Here, we describe procedures to show cortical and subcortical neurons of human brains immersed in formalin for months or even years. The tissue was sliced with a vibratome, post-fixed in a combination of paraformaldehyde and picric acid in phosphate buffer, followed by osmium tetroxide and potassium dicromate, ""sandwiched"" between cover slips, and immersed in silver nitrate. The whole procedure takes between 5 and 11 days to achieve good results. The Golgi method has its characteristic pitfalls but, with this procedure, neurons and glia appear well-impregnated, allowing qualitative and quantitative studies under light microscopy. This contribution adds to the basic techniques for the study of human nervous tissue with the same advantages described for the ""single-section"" Golgi method in other species; it is easy and fast, requires minimal equipment, and provides consistent results. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The prognosis of glioblastomas is still extremely poor and the discovery of novel molecular therapeutic targets can be important to optimize treatment strategies. Gene expression analyses comparing normal and neoplastic tissues have been used to identify genes associated with tumorigenesis and potential therapeutic targets. We have used this approach to identify differentially expressed genes between primary glioblastomas and non-neoplastic brain tissues. We selected 20 overexpressed genes related to cell cycle, cellular movement and growth, proliferation and cell-to-cell signaling and analyzed their expression levels by real time quantitative PCR in cDNA obtained from microdissected fresh tumor tissue from 20 patients with primary glioblastomas and from 10 samples of non-neoplastic white matter tissue. The gene expression levels were significantly higher in glioblastomas than in non-neoplastic white matter in 18 out of 20 genes analyzed: P < 0.00001 for CDKN2C, CKS2, EEF1A1, EMP3, PDPN, BNIP2, CA12, CD34, CDC42EP4, PPIE, SNAI2, GDF15 and MMP23b; and NFIA (P: 0.0001), GPS1 (P: 0.0003), LAMA1 (P: 0.002), STIM1 (P: 0.006), and TASP1 (P: 0.01). Five of these genes are located in contiguous loci at 1p31-36 and 2 at 17q24-25 and 8 of them encode surface membrane proteins. PDPN and CD34 protein expression were evaluated by immunohistochemistry and they showed concordance with the PCR results. The present results indicate the presence of 18 overexpressed genes in human primary glioblastomas that may play a significant role in the pathogenesis of these tumors and that deserve further functional investigation as attractive candidates for new therapeutic targets.
Resumo:
BACKGROUND AND PURPOSE: There are 2 main hypotheses concerning the cause of mirror movements (MM) in Kallmann syndrome (KS): abnormal development of the primary motor system, involving the ipsilateral corticospinal tract, and lack of contralateral motor cortex inhibitory mechanisms, mainly through the corpus callosum. The purpose of our study was to determine white and gray matter volume changes in a KS population by using optimized voxel-based morphometry (VBM) and to investigate the relationship between the abnormalities and the presence of MM, addressing the 2 mentioned hypotheses. MATERIALS AND METHODS: T1-weighted volumetric images from 21 patients with KS and 16 matched control subjects were analyzed with optimized VBM. Images were segmented and spatially normalized, and these deformation parameters were then applied to the original images before the second segmentation. Patients were divided into groups with and without MM, and a t test statistic was then applied on a voxel-by-voxel basis between the groups and controls to evaluate significant differences. RESULTS: When considering our hypothesis a priori, we found that 2 areas of increased gray matter volume, in the left primary motor and sensorimotor cortex, were demonstrated only in patients with MM, when compared with healthy controls. Regarding white matter alterations, no areas of altered volume involving the corpus callosum or the projection of the corticospinal tract were demonstrated. CONCLUSION: The VBM study did not show significant white matter changes in patients with KS but showed gray matter alterations in keeping with a hypertrophic response to a deficient pyramidal decussation in patients with MM. In addition, gray matter alterations were observed in patients without MM, which can represent more complex mechanisms determining the presence or absence of this symptom.
Resumo:
Scher, LML, Ferriolli, E, Moriguti, JC, Scher, R, and Lima, NKC. The effect of different volumes of acute resistance exercise on elderly individuals with treated hypertension. J Strength Cond Res 25(4): 1016-1023, 2011-Acute resistance exercise can reduce the blood pressure (BP) of hypertensive subjects. The aim of this study was to evaluate the effect of different volumes of acute low-intensity resistance exercise over the magnitude and the extent of BP changes in treated hypertensive elderly individuals. Sixteen participants (7 men, 9 women), with mean age of 68 6 5 years, performed 3 independent randomized sessions: Control (C: 40 minutes of rest), Exercise 1 (E1: 20 minutes, 1 lap in the circuit), and Exercise 2 (E2: 40 minutes, 2 laps in the circuit) with the intensity of 40% of 1 repetition maximum. Blood pressure was measured before (during 20 minutes) and after each session (every 5 minutes during 60 minutes) using both a mercury sphygmomanometer and a semiautomatic device (Omrom-HEM-431). After that, 24-hour ambulatory blood pressure monitoring was performed (Dyna-MAPA). Blood pressure decreased during the first 60 minutes (systolic: p < 0.01, diastolic: p < 0.05) after all exercise sessions. Only the highest volume session promoted a reduction of mean systolic 24-hour BP and awake BP (p, 0.05) after exercise, with higher diastolic BP during sleep (p, 0.05). Diastolic 24-hour BP and both systolic and diastolic BP during sleep were higher after E1 (p, 0.05). Concluding, acute resistive exercise sessions in a circuit with different volumes reduced BP during the first 60 minutes after exercise in elderly individuals with treated hypertension. However, only the highest volume promoted a reduction of mean 24-hour and awake systolic BP.
Resumo:
Blood irradiation can be performed using a dedicated blood irradiator or a teletherapy unit. A thermal device providing appropriate storage conditions during blood components irradiation with a teletherapy unit has been recently proposed. However, the most appropriated volume of the thermal device was not indicated. The goal of this study was to indicate the most appropriated blood volume for irradiation using a teletherapy unit in order to minimize both the dose heterogeneity in the volume and the blood irradiation time using these equipments. Theoretical and experimental methods were used to study the dose distribution in the blood volume irradiated using a linear accelerator and a cobalt-60 therapy machine. The calculation of absorbed doses in the middle plane of cylindrical acrylic volumes was accomplished by a treatment planning system. Experimentally, we also used cylindrical acrylic phantoms and thermoluminescent dosimeters to confirm the calculated doses. The data obtained were represented by isodose curves. We observed that an irradiation volume should have a height of 28 cm and a diameter of 28 cm and a height of 35 cm and a diameter of 35 cm, when the irradiation is to be performed by a linear accelerator and a cobalt-60 teletherapy unit, respectively. Calculated values of relative doses varied from 93% to 100% in the smaller volume, and from 66% to 100% in the largest one. A difference of 5.0%, approximately, was observed between calculated and experimental data. The size of these volumes permits the irradiation of blood bags in only one bath without compromising the homogeneity of the absorbed dose over the irradiated volume. Thus, these irradiation volumes can be recommend to minimize the irradiation time when a teletherapy unit is used to irradiate blood. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In social anxiety disorder (SAD), impairments in limbic/paralimbic structures are associated with emotional dysregulation and inhibition of the medial prefrontal cortex (MPFq. Little is known, however, about alterations in limbic and frontal regions associated with the integrated morphometric, functional, and structural architecture of SAD. Whether altered gray matter volume is associated with altered functional and structural connectivity in SAD. Three techniques were used with 18 SAD patients and 18 healthy controls: voxel-based morphometry; resting-state functional connectivity analysis; and diffusion tensor imaging tractography. SAD patients exhibited significantly decreased gray matter volumes in the right posterior inferior temporal gyrus (ITG) and right parahippocampal/hippocampal gyrus (PHG/HIP). Gray matter volumes in these two regions negatively correlated with the fear factor of the Liebowitz Social Anxiety Scale. In addition, we found increased functional connectivity in SAD patients between the right posterior ITG and the left inferior occipital gyrus, and between the right PHF/HIP and left middle temporal gyms. SAD patients had increased right MPFC volume, along with enhanced structural connectivity in the genu of the corpus callosum. Reduced limbic/paralimbic volume, together with increased resting-state functional connectivity, suggests the existence of a compensatory mechanism in SAD. Increased MPFC volume, consonant with enhanced structural connectivity, suggests a long-time overgeneralization of structural connectivity and a role of this area in the mediation of clinical severity. Overall, our results may provide a valuable basis for future studies combining morphometric, functional and anatomical data in the search for a comprehensive understanding of the neural circuitry underlying SAD. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Objective: Cannabidiol is a chemical constituent from Cannabis sativa and it has multiple mechanisms of action, including antidepressant effects. The main objective of the present study was to evaluate behavioural and molecular effects induced by administration of cannabidiol and imipramine in rats. Methods: In the present study, rats were acutely or chronically treated for 14 days once a day with saline, cannabidiol (15, 30 and 60 mg/kg) or imipramine (30 mg/kg) and the animals behaviour was assessed in forced swimming and open-field tests. Afterwards, the prefrontal cortex, hippocampus and amygdala brain-derived neurotrophic factor (BDNF) levels were assessed by enzyme-linked immunosorbent sandwich assay. Results: We observed that both acute and chronic treatments with imipramine at the dose of 30 mg/kg and cannabidiol at the dose of 30 mg/kg reduced immobility time and increased swimming time; climbing time was increased only with imipramine at the dose of 30 mg/kg, without affecting locomotor activity. In addition, chronic treatment with cannabidiol at the dose of 15 mg/kg and imipramine at the dose of 30 mg/kg increased BDNF levels in the rat amygdala. Conclusion: In conclusion, our results indicate that cannabidiol has an antidepressant-like profile and could be a new pharmacological target for the treatment of major depression.
Resumo:
Delta-9-tetrahydrocannabinol (Delta-9-THC) and Cannabidiol (CBD), the two main ingredients of the Cannabis sativa plant have distinct symptomatic and behavioral effects. We used functional magnetic resonance imaging (fMRI) in healthy volunteers to examine whether Delta-9-THC and CBD had opposite effects on regional brain function. We then assessed whether pretreatment with CBD can prevent the acute psychotic symptoms induced by Delta-9-THC. Fifteen healthy men with minimal earlier exposure to cannabis were scanned while performing a verbal memory task, a response inhibition task, a sensory processing task, and when viewing fearful faces. Subjects were scanned on three occasions, each preceded by oral administration of Delta-9-THC, CBD, or placebo. BOLD responses were measured using fMRI. In a second experiment, six healthy volunteers were administered Delta-9-THC intravenously on two occasions, after placebo or CBD pretreatment to examine whether CBD could block the psychotic symptoms induced by Delta-9-THC. Delta-9-THC and CBD had opposite effects on activation relative to placebo in the striatum during verbal recall, in the hippocampus during the response inhibition task, in the amygdala when subjects viewed fearful faces, in the superior temporal cortex when subjects listened to speech, and in the occipital cortex during visual processing. In the second experiment, pretreatment with CBD prevented the acute induction of psychotic symptoms by Delta-9-tetrahydrocannabinol. Delta-9-THC and CBD can have opposite effects on regional brain function, which may underlie their different symptomatic and behavioral effects, and CBD`s ability to block the psychotogenic effects of Delta-9-THC. Neuropsychopharmacology (2010) 35, 764-774; doi:10.1038/npp.2009.184; published online 18 November 2009
Resumo:
Evidence from animal models of anxiety has led to the hypothesis that serotonin enhances inhibitory avoidance (related to anxiety) in the forebrain, but inhibits one-way escape (panic) in the midbrain periaqueductal gray (PAG). Stressing the difference between these emotions, neuroendocrinological results indicate that the hypothalamic-pituitary-adrenal axis is activated by anticipatory anxiety, but not by panic attack nor by electrical stimulation of the rat PAG. Functional neuroimaging has shown activation of the insula and upper brain stem (including PAG), as well as deactivation of the anterior cingulated cortex (ACC) during experimental panic attacks. Voxel-based morphometric analysis of brain magnetic resonance images has shown a grey matter volume increase in the insula and upper brain stem, and a decrease in the ACC of panic patients at rest, as compared to healthy controls. The insula and the ACC detect interoceptive stimuli, which are overestimated by panic patients. It is suggested that these brain areas and the PAG are involved in the pathophysiology of panic disorder. (C) 2008 Elsevier Ltd. All rights reserved.