73 resultados para Bacterial-colonization
Resumo:
Community-acquired pneumonia (CAP) is a common cause of morbidity among children. Evidence on seasonality, especially on the frequency of viral and bacterial causative agents is scarce; such information may be useful in an era of changing climate conditions worldwide. To analyze the frequency of distinct infections, meteorological indicators and seasons in children hospitalized for CAP in Salvador, Brazil, nasopharyngeal aspirate and blood were collected from 184 patients aged < 5 y over a 21-month period. Fourteen microbes were investigated and 144 (78%) cases had the aetiology established. Significant differences were found in air temperature between spring and summer (p = 0.02) or winter (p < 0.001), summer and fall (p = 0.007) or winter (p < 0.001), fall and winter (p = 0.002), and on precipitation between spring and fall (p = 0.01). Correlations were found between: overall viral infections and relative humidity (p = 0.006; r = 0.6) or precipitation (p = 0.03; r = 0.5), parainfluenza and precipitation (p = 0.02; r = -0.5), respiratory syncytial virus (RSV) and air temperature (p = 0.048; r = -0.4) or precipitation (p = 0.045; r = 0.4), adenovirus and precipitation (p = 0.02; r = 0.5), pneumococcus and air temperature (p = 0.04; r = -0.4), and Chlamydia trachomatis and relative humidity (p = 0.02; r = -0.5). The frequency of parainfluenza infection was highest during spring (32.1%; p = 0.005) and that of RSV infection was highest in the fall (36.4%; p < 0.001). Correlations at regular strength were found between several microbes and meteorological indicators. Parainfluenza and RSV presented marked seasonal patterns.
Resumo:
The aim of this study was to assess the prevalence of factors associated with oral colonization by Candida spp. in pediatric patients with AIDS. The sample comprised of 117 children. Clinical status, medicines in use, and laboratory findings were obtained from hospital records; sociodemographic data were given by relatives. A dental examination assessed the prevalence of dental caries. The prevalence of oral colonization by Candida was 62%. Only seven children presented clinical manifestation of oral candidosis despite their high viral load index and low-for-age CD4 count. Candida colonization was directly associated with frequent use of antibiotics (prevalence ratio [PR] = 1.44), sulfa drugs (PR = 1.23), alteration in the oral mucosa (PR = 1.55), and untreated dental caries (PR = 1.93). It was inversely associated with the use of antiretroviral therapies (PR = 0.65). Candida albicans was the most frequently detected species (80%); phenotypic tests did not detect C. dubliniensis strains. This study observed a low prevalence of Candida-related oral lesions in these patients, which is compatible with the hypothesis that antiretroviral medicines may have contributed to reducing oral manifestations from Candida infection. The high prevalence of Candida colonization in HIV+/AIDS children with untreated dental caries reinforces the importance of oral health care in interdisciplinary health units that assist these patients.
Resumo:
Introduction: The characterization of microbial communities infecting the endodontic system in each clinical condition may help on the establishment of a correct prognosis and distinct strategies of treatment. The purpose of this study was to determine the bacterial diversity in primary endodontic infections by 16S ribosomal-RNA (rRNA) sequence analysis. Methods: Samples from root canals of untreated asymptomatic teeth (n = 12) exhibiting periapical lesions were obtained, 165 rRNA bacterial genomic libraries were constructed and sequenced, and bacterial diversity was estimated. Results: A total of 489 clones were analyzed (mean, 40.7 +/- 8.0 clones per sample). Seventy phylotypes were identified of which six were novel phylotypes belonging to the family Ruminococcaceae. The mean number of taxa per canal was 10.0, ranging from 3 to 21 per sample; 65.7% of the cloned sequences represented phylotypes for which no cultivated isolates have been reported. The most prevalent taxa were Atopobium rimae (50.0%), Dialister invisus, Pre-votella oris, Pseudoramibacter alactolyticus, and Tannerella forsythia (33.3%). Conclusions: Although several key species predominate in endodontic samples of asymptomatic cases with periapical lesions, the primary endodontic infection is characterized by a wide bacterial diversity, which is mostly represented by members of the phylum Firmicutes belonging to the class Clostridia followed by the phylum Bacteroidetes. (J Ended 2011;37:922-926)
The pst operon of enteropathogenic Escherichia coli enhances bacterial adherence to epithelial cells
Resumo:
Enteropathogenic Escherichia coli (EPEC) adheres in vivo and in vitro to epithelial cells. Two main adhesins, the bundle-forming pilus and intimin, encoded by the Up operon and eae, respectively, are responsible for the localized and the intimate adherence phenotypes. Deletion of the pst operon of EPEC abolishes the transport of inorganic phosphate through the phosphate-specific transport system and causes the constitutive expression of the PHO regulon genes. In the absence of pst there is a decrease in the expression of the main EPEC adhesins and a reduction in bacterial adherence to epithelial cells in vitro. This effect is not related to PHO constitutivity, because a Delta pst phoB double mutant that is defective in the transcription of the PHO genes also displayed low levels of adherence and expression of adhesins. Likewise, a PHO-constitutive phoR mutation did not affect bacterial adherence. The expression of the per operon, which encodes the Up and ler regulators PerA and PerC, is also negatively affected by the pst deletion. Overall, the data presented here demonstrate that the pst operon of EPEC plays a positive role in the bacterial adherence mechanism by increasing the expression of perA and perC and consequently the transcription of bfp and eae.
Resumo:
The numbers of culturable diazotrophic endophytic bacteria (CDEB) from roots stems and leaves of sugarcane submitted to organic inorganic or no fertilization were compared In order to determine the size of the N(2) fixing populations the Most Probable Number technique (MPN) was used The quantification of diazotrophic bacteria by using the acetylene reduction assay (ARA) was more accurate than observing the bacterial growth in the vials to confirm N(2) fixing capability the detection of gene nifH was performed on a sample of 105 Isolated bacteria The production of extracellular enzymes involved in the penetration of the plants by the bacteria was also studied The results showed that organic fertilization enhances the number of CDEB when compared with conventional fertilization used throughout the growing season The maximum number of bacteria was detected in the roots Roots and stems presented the greatest number of CDEB in the middle of the cropping season and in leaves numbers varied according to the treatment Using two pairs of primers and two different methods the nifH gene was found in 104 of the 105 tested isolates Larger amounts of pectinase were released by isolates from sugarcane treated with conventional fertilizers (66%) whereas larger amounts of cellulase were released by strains isolated from sugarcane treated with organic fertilizers (80%) (C) 2010 Elsevier Masson SAS All rights reserved
Resumo:
Shiga-like toxin 2 (Stx2)-producing enterohemorrhagic Escherichia coli (referred to as EHEC or STEC) strains are the primary etiologic agents of hemolytic-uremic syndrome (HUS), which leads to renal failure and high mortality rates. Expression of Stx2 is the most relevant virulence-associated factor of EHEC strains, and toxin neutralization by antigen-specific serum antibodies represents the main target for both preventive and therapeutic anti-HUS approaches. In the present report, we describe two Salmonella enterica serovar Typhimurium aroA vaccine strains expressing a nontoxic plasmid-encoded derivative of Stx2 (Stx2 Delta AB) containing the complete nontoxic A2 subunit and the receptor binding B subunit. The two S. Typhimurium strains differ in the expression of flagellin, the structural subunit of the flagellar shaft, which exerts strong adjuvant effects. The vaccine strains expressed Stx2 Delta AB, either cell bound or secreted into the extracellular environment, and showed enhanced mouse gut colonization and high plasmid stability under both in vitro and in vivo conditions. Oral immunization of mice with three doses of the S. Typhimurium vaccine strains elicited serum anti-Stx2B (IgG) antibodies that neutralized the toxic effects of the native toxin under in vitro conditions (Vero cells) and conferred partial protection under in vivo conditions. No significant differences with respect to gut colonization or the induction of antigen-specific antibody responses were detected in mice vaccinated with flagellated versus nonflagellated bacterial strains. The present results indicate that expression of Stx2 Delta AB by attenuated S. Typhimurium strains is an alternative vaccine approach for HUS control, but additional improvements in the immunogenicity of Stx2 toxoids are still required.
Resumo:
The correlation between the microdilution (MD), Etest (R) (ET), and disk diffusion (DD) methods was determined for amphotericin B, itraconazole and fluconazole. The minimal inhibitory concentration (MIC) of those antifungal agents was established for a total of 70 Candida spp. isolates from colonization and infection. The species distribution was: Candida albicans (n = 27), C. tropicalis (n = 17), C. glabrata (n = 16), C. parapsilosis (n = 8), and C. lusitaniae (n = 2). Non-Candida albicans Candida species showed higher MICs for the three antifungal agents when compared with C. albicans isolates. The overall concordance (based on the MIC value obtained within two dilutions) between the ET and the MD method was 83% for amphotericin B, 63% for itraconazole, and 64% for fluconazole. Considering the breakpoint, the agreement between the DD and MD methods was 71% for itraconazole and 67% for fluconazole. The DD zone diameters are highly reproducible and correlate well with the MD method, making agar-based methods a viable alternative to MD for susceptibility testing. However, data on agar-based tests for itraconazole and amphotericin B are yet scarce. Thus, further research must still be carded out to ensure the standardization to other antifungal agents. J. Clin. Lab. Anal. 23:324-330, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
We comparatively examined the nutritional, molecular and optical and electron microscopical characteristics of reference species and new isolates of trypanosomatids harboring bacterial endosymbionts. Sequencing of the V7V8 region of the small subunit of the ribosomal RNA (SSU rRNA) gene distinguished six major genotypes among the 13 isolates examined. The entire sequences of the SSU rRNA and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) genes were obtained for phylogenetic analyses. In the resulting phylogenetic trees, the symbiont-harboring species clustered as a major clade comprising two subclades that corresponded to the proposed genera Angomonas and Strigomonas. The genus Angomonas comprised 10 flagellates including former Crithidia deanei and C. desouzai plus a new species. The genus Strigomonas included former Crithidia oncopelti and Blastocrithidia cuiicis plus a new species. Sequences from the internal transcribed spacer of ribosomal DNA (ITS rDNA) and size polymorphism of kinetoplast DNA (kDNA) minicircles revealed considerable genetic heterogeneity within the genera Angomonas and Strigomonas. Phylogenetic analyses based on 16S rDNA and ITS rDNA sequences demonstrated that all of the endosymbionts belonged to the Betaproteobacteria and revealed three new species. The congruence of the phylogenetic trees of trypanosomatids and their symbionts support a co-divergent host-symbiont evolutionary history. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
Microbial community composition was examined in two soil types, Anthrosols and adjacent soils, sampled from three locations in the Brazilian Amazon. The Anthrosols, also known as Amazonian dark earths, are highly fertile soils that are a legacy of pre-Columbian settlement. Both Anthrosols and adjacent soils are derived from the same parent material and subject to the same environmental conditions, including rainfall and temperature; however, the Anthrosols contain high levels of charcoal-like black carbon from which they derive their dark color. The Anthrosols typically have higher cation exchange capacity, higher pH, and higher phosphorus and calcium contents. We used culture media prepared from soil extracts to isolate bacteria unique to the two soil types and then sequenced their 16S rRNA genes to determine their phylogenetic placement. Higher numbers of culturable bacteria, by over two orders of magnitude at the deepest sampling depths, were counted in the Anthrosols. Sequences of bacteria isolated on soil extract media yielded five possible new bacterial families. Also, a higher number of families in the bacteria were represented by isolates from the deeper soil depths in the Anthrosols. Higher bacterial populations and a greater diversity of isolates were found in all of the Anthrosols, to a depth of up to 1 m, compared to adjacent soils located within 50-500 m of their associated Anthrosols. Compared to standard culture media, soil extract media revealed diverse soil microbial populations adapted to the unique biochemistry and physiological ecology of these Anthrosols.
Resumo:
In the xylem vessels of susceptible hosts, such as citrus trees, Xylella fastidiosa forms biofilm-like colonies that can block water transport, which appears to correlate to disease symptoms. Besides aiding host colonization, bacterial biofilms play an important role in resistance against antimicrobial agents, for instance antimicrobial peptides (AMPs). Here, we show that gomesin, a potent AMP from a tarantula spider, modulates X. fastidiosa gene expression profile upon 60 min of treatment with a sublethal concentration. DNA microarray hybridizations revealed that among the upregulated coding sequences, some are related to biofilm production. In addition, we show that the biofilm formed by gomesin-treated bacteria is thicker than that formed by nontreated cells or cells exposed to streptomycin. We have also observed that the treatment of X. fastidiosa with a sublethal concentration of gomesin before inoculation in tobacco plants correlates with a reduction in foliar symptoms, an effect possibly due to the trapping of bacterial cells to fewer xylem vessels, given the enhancement in biofilm production. These results warrant further investigation of how X. fastidiosa would respond to the AMPs produced by citrus endophytes and by the insect vector, leading to a better understanding of the mechanism of action of these molecules on bacterial virulence.
Resumo:
A novel material comprised of bacterial cellulose (BC) and Laponite clay with different inorganic organic ratios (m/m) was prepared by the contact of never-dried membranes of BC with a previous dispersion of clay particles in water. Field emission scanning electron microscopy (FE-SEM) data of composite materials revealed an effective adhesion of clay over the surface of BC membrane; inorganic particles also penetrate into the polymer bulk, with a significant change of the surface topography even at 5% of clay loading. As a consequence, the mechanical properties are deeply affected by the presence of clay, increasing the values of the Young modulus and the tensile strength. However the maximum strain is decreased when the clay content is increased in the composite in comparison to pristine BC. The main weight loss step of the composites is shifted towards higher temperatures compared to BC, indicating that the clay particles slightly protect the polymer from thermal and oxidative decomposition. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases, including Pierce`s disease of grapevines. Disease manifestation by X. fastidiosa is associated with the expression of several factors, including the type IV pili that are required for twitching motility. We provide evidence that an operon, named Pil-Chp, with genes homologous to those found in chemotaxis systems, regulates twitching motility. Transposon insertion into the pilL gene of the operon resulted in loss of twitching motility (pilL is homologous to cheA genes encoding kinases). The X. fastidiosa mutant maintained the type IV pili, indicating that the disrupted pilL or downstream operon genes are involved in pili function, and not biogenesis. The mutated X. fastidiosa produced less biofilm than wild-type cells, indicating that the operon contributes to biofilm formation. Finally, in planta the mutant produced delayed and less severe disease, indicating that the Pil-Chp operon contributes to the virulence of X. fastidiosa, presumably through its role in twitching motility.
Resumo:
Aims: To investigate the effect of the biosurfactants surfactin and rhamnolipids on the adhesion of the food pathogens Listeria monocytogenes, Enterobacter sakazakii and Salmonella Enteritidis to stainless steel and polypropylene surfaces. Methods and Results: Quantification of bacterial adhesion was performed using the crystal violet staining technique. Preconditioning of surfaces with surfactin caused a reduction on the number of adhered cells of Ent. sakazakii and L. monocytogenes on stainless steel. The most significant result was obtained with L. monocytogenes where number of adhered cells was reduced by 10(2) CFU cm(-2). On polypropylene, surfactin showed a significant decrease on the adhesion of all strains. The adsorption of surfactin on polystyrene also reduces the adhesion of L. monocytogenes and Salm. Enteritidis growing cells. For short contact periods using nongrowing cells or longer contact periods with growing cells, surfactin was able to delay bacterial adhesion. Conclusions: The prior adsorption of surfactin to solid surfaces contributes on reducing colonization of the pathogenic bacteria. Significance and Impact of the Study: This is the first work investigating the effect of surfactin on the adhesion of the food pathogens L. monocytogenes, Ent. sakazakii and Salm. Enteritidis to polypropylene and stainless steel surfaces.