250 resultados para Acrylic resin materials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrophilic dentin adhesives are prone to water sorption that adversely affects the durability of resin-dentin bonds. This study examined the feasibility of bonding to dentin with hydrophobic resins via the adaptation of electron microscopy tissue processing techniques. Hydrophobic primers were prepared by diluting 2,2-bis[4(2-hydroxy-3-methacryloyloxy-propyloxy)-phenyl] propane/triethyleneglycol dimethacrylate resins with known ethanol concentrations. They were applied to acid-etched moist dentin using an ethanol wet bonding technique that involved: (1) stepwise replacement of water with a series of increasing ethanol concentrations to prevent the demineralized collagen matrix from collapsing; (2) stepwise replacement of the ethanol with different concentrations of hydrophobic primers and subsequently with neat hydrophobic resin. Using the ethanol wet bonding technique, the experimental primer versions with 40, 50, and 75% resin exhibited tensile strengths which were not significantly different from commercially available hydrophilic three-step adhesives that were bonded with water wet bonding technique. The concept of ethanol wet bonding may be explained in terms of solubility parameter theory. This technique is sensitive to water contamination, as depicted by the lower tensile strength results from partial dehydration protocols. The technique has to be further improved by incorporating elements of dentin permeability reduction to avoid water from dentinal tubules contaminating water-free resin blends during bonding. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res 84A: 19-29, 2008.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to evaluate in vitro light activation of the nano-filled resin composite Vita shade A1 and A3 with a halogen lamp (QTH) and argon ion laser by Knoop microhardness profile. Materials and methods: Specimens of nanofilled composite resin (Z350-3 M-ESPE) Vita shade A1 and A3 were prepared with a single increment inserted in 2.0-mm-thick and 3-mm diameter disc-shaped Teflon mold. The light activation was performed with QTH for 20 s (with an intensity of approximately 1,000 mW/cm(2) and 700 mW/cm(2)) and argon ion laser for 10 s (with a power of 150 mW and 200 mW). Knoop microhardness test was performed after 24 h and 6 months. The specimens were divided into the 16 experimental groups (n = 10), according to the factors under study: photoactivation form, resin shade, and storage time. Knoop microhardness data was analyzed by a factorial ANOVA and TukeyA ` s tests at the 0.05 level of significance. Results: Argon ion laser was not able to photo-activate the darker shade of the nanofilled resin composite evaluated but when used with 200 mW it can be as effective as QTH to photo-activate the lighter shade with only 50% of the time exposure. After 6 months storage, an increase in the means of Knoop microhardness values were observed. Conclusions: Light-activation significantly influenced the Knoop microhardness values for the darker nanofilled resin composite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adhesive performance on deproteinized dentin of different self-adhesive resin cements was evaluated through microtensile bond strength (mu TBS) analysis and scanning electron microscopy (SEM). Occlusal dentin of human molars were distributed into different groups, according to the categories: adhesive cementation with two-step bonding systems-control Groups (Adper Single Bond 2 + RelyX ARC/3M ESPE; One Step Plus + Duolink/Bisco; Excite + Variolink I/Ivoclar Vivadent) and self-adhesive cementation-experimental groups (Rely X Unicem/3M ESPE; Biscem/Bisco; MultiLink Sprint/Ivoclar Vivadent). Each group was subdivided according to the dentin approach to: alpha, maintenance of collagen fibers and beta, deproteinization. The mean values were obtained, and submitted to ANOVA and Tukey test. Statistical differences were obtained to the RelyX Unicem groups (alpha = 13.59 MPa; beta = 30.19 MPa). All the BIS Group specimens failed before the mechanical tests. Dentinal deproteinization provided an improved bond performance for the self-adhesive cement Rely X Unicem, and had no negative effect on the other cementing systems studied. (C) 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 98B: 387-394, 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: This study evaluated the immediate and 6-month resin-dentin mu-bond strength (mu TBS) of one-step self-etch systems (Adper Prompt L-Pop [AD] 3M ESPE; Xeno III [XE] Dentsply De Trey; iBond [iB] Heraeus Kulzer) under different application modes. Materials and methods: Dentin oclusal surfaces were exposed by grinding with 600-grit SiC paper. The adhesives were applied according to the manufacturer`s directions [MD], or with double application of the adhesive layer [DA] or following the manufacturer`s directions plus a hydrophobic resin layer coating [HL]. After applying the adhesive resins, composite crowns were built up incrementally. After 24-h water storage, the specimens were serially sectioned in ""x"" and ""y"" directions to obtain bonded sticks of about 0.8 mm 2 to be tested immediately [IM] or after 6 months of water storage [6M] at a crosshead speed of 0.5 mm/min. The data from each adhesive was analyzed by a two-way repeated measures ANOVA (mode of application vs. storage time) and Tukey`s test (alpha = 0.05). Results: The adhesives performed differently according to the application mode. The DA and HL either improved the immediate performance of the adhesive or did not differ from the MD. The resin-dentin bond strength values observed after 6 months were higher when a hydrophobic resin coat was used than compared to those values observed under the manufacturer`s directions. Conclusions: The double application of one-step self-etch system can be safety performed however the application of an additional hydrophobic resin layer can improve the immediate resin-dentin bonds and reduce the degradation of resin bonds over time. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. To examine the effect of prolonged application time on the early and 3-year resin-dentin microtensile bond strength. Methods. Water/ethanol (Single Bond [SB]) and acetone-based systems (One Step [OS]) were employed. A flat superficial dentin surface was exposed in third human molars by wet abrasion. The adhesives were applied to a delimited area of 52 mm(2) on wet surfaces, for 40, 90, 150 and 300s. Four teeth were assigned for each experimental condition. Composite build-ups were constructed incrementally After water storage at 37 degrees C for 24 h, teeth were sectioned to obtain sticks with cross-sectional areas of 0.8 mm(2) to be tested in tension (0.5 mm/min) either immediately (IM) or after 3 years (3Y) of water storage. The microtensile bond strength (mu TBS) values were analyzed by two way repeated measures ANOVA and Tukey`s test (alpha = 0.05). Results. The 90- and 150-s groups achieved the highest IM mu TBS for OS (p < 0.01). For SB, the highest IM mu TBS values were observed after 300-s application (p < 0.01). Significant decreases in mu TBS were observed for OS in the 40- and 90-s groups after 3Y, except for the 150-s group. With regard to SB, after 3Y significant drops in mu TBS values were observed for the 40- and 150-s groups, except for the 300-s group. Significance. Prolonged application times can increase the immediate LTBS of two-step etch-and-rinse adhesive systems and make the adhesive layer more stable over time. (c) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The literature shows contradictory results regarding the role of composite shrinkage and elastic modulus as determinants of polymerization stress. The present study aimed at a better understanding of the test mechanics that could explain such divergences among studies. The hypothesis was that the effects of composite shrinkage and elastic modulus on stress depend upon the compliance of the testing system. A commonly used test apparatus was simulated by finite element analysis, with different compliance levels defined by the bonding substrate (steel, glass, composite, or acrylic). Composites with moduli between 1 and 12 GPa and shrinkage values between 0.5% and 6% were modeled. Shrinkage was simulated by thermal analogy. The hypothesis was confirmed. When shrinkage and modulus increased simultaneously, stress increased regardless of the substrate. However, if shrinkage and modulus were inversely related, their magnitudes and interaction with rod material determined the stress response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To characterize the interaction of 1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide Hydrochloride (EDC) with dentin matrix and its effect on the resin-dentin bond. Methods: Changes to the stiffness of demineralized dentin fragments treated with EDC/N-hydroxysuccinimide (NHS) in different solutions were evaluated at different time points. The resistance against enzymatic degradation was indirectly evaluated by ultimate tensile strength (UTS) test of demineralized dentin treated or not with EDC/NHS and subjected to collagenase digestion. Short- and long-term evaluations of the strength of resin-dentin interfaces treated with EDC/NHS for 1 h were performed using microtensile bond strength (mu TBS) test. All data (MPa) were individually analyzed using ANOVA and Tukey HSD tests (alpha = 0.05). Results: The different exposure times significantly increased the stiffness of dentin (p < 0.0001, control-5.15 and EDC/NHS-29.50), while no differences were observed among the different solutions of EDC/NHS (p = 0.063). Collagenase challenge did not affect the UTS values of EDC/NHS group (6.08) (p > 0.05), while complete degradation was observed for the control group (p = 0.0008, control-20.84 and EDC/NHS-43.15). EDC/NHS treatment did not significantly increase resin-dentin mu TBS, but the values remained stable after 12 months water storage (p < 0.05). Conclusions: Biomimetic use of EDC/NHS to induce exogenous collagen cross-links resulted in increased mechanical properties and stability of dentin matrix and dentin-resin interfaces. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 94B: 250-255, 2010.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. The role of inorganic content on physical properties of resin composites is well known. However, its influence on polymerization stress development has not been established. The aim of this investigation was to evaluate the influence of inorganic fraction on polymerization stress and its determinants, namely, volumetric shrinkage, elastic modulus and degree of conversion. Methods. Eight experimental composites containing 1:1 BisGMA (bisphenylglycidyl dimethacrylate): TEGDMA (triethylene glycol dimethacrylate) (in mol) and barium glass at increasing concentrations from 25 to 60 vol.% (5% increments) were tested. Stress was determined in a universal test machine using acrylic as bonding substrate. Nominal polymerization stress was obtained diving the maximum load by the cross-surface area. Shrinkage was measured using a water picnometer. Elastic modulus was obtained by three-point flexural test. Degree of conversion was determined by FT-Raman spectroscopy. Results. Polymerization stress and shrinkage showed inverse relationships with filler content (R(2) = 0.965 and R(2) = 0.966, respectively). Elastic modulus presented a direct correlation with inorganic content (R(2) = 0.984). Degree of conversion did not vary significantly. Polymerization stress showed a strong direct correlation with shrinkage (R(2) = 0.982) and inverse with elastic modulus (R(2) = 0.966). Significance. High inorganic contents were associated with low polymerization stress values, which can be explained by the reduced volumetric shrinkage presented by heavily filled composites. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dentin bonding performed with hydrophobic resins using ethanol-wet bonding should be less susceptible to degradation but this hypothesis has never been validated. Objectives. This in vitro study evaluated stability of resin-dentin bonds created with an experimental three-step BisGMA/TEGDMA hydrophobic adhesive or a three-step hydrophilic adhesive after one year of accelerated aging in artificial saliva. Methods. Flat surfaces in mid-coronal dentin were obtained from 45 sound human molars and randomly divided into three groups (n = 15): an experimental three-step BisGMA/TEGDMA hydrophobic adhesive applied to ethanol (ethanol-wet bonding-GI) or water-saturated dentin (water-wet bonding-GII) and Adper Scotchbond Multi-Purpose [MP-GIII] applied, according to manufacturer instructions, to water-saturated dentin. Resin composite crowns were incrementally formed and light-cured to approximately 5 mm in height. Bonded specimens were stored in artificial saliva at 37 degrees C for 24h and sectioned into sticks. They were subjected to microtensile bond test and TEM analysis immediately and after one year. Data were analyzed with two-way ANOVA and Tukey tests. Results. MP exhibited significant reduction in microtensile bond strength after aging (24 h: 40.6 +/- 2.5(a); one year: 27.5 +/- 3.3(b); in MPa). Hybrid layer degradation was evident in all specimens examined by TEM. The hydrophobic adhesive with ethanol-wet bonding preserved bond strength (24 h: 43.7 +/- 7.4(a); one year: 39.8 +/- 2.7(a)) and hybrid layer integrity, with the latter demonstrating intact collagen fibrils and wide interfibrillar spaces. Significance. Coaxing hydrophobic resins into acid-etched dentin using ethanol-wet bonding preserves resin-dentin bond integrity without the adjunctive use of MMPs inhibitors and warrants further biocompatibility and patient safety`s studies and clinical testing. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. To evaluate the biaxial and short-beam uniaxial strength tests applied to resin composites based upon their Weibull parameters, fractographic features and stress distribution. Methods. Disk- (15 mm x 1 mm) and beam-shaped specimens (10 mm x 2 mm x 1 mm) of three commercial composites (Concept/Vigodent, CA; Heliomolar/Ivoclar-Vivadent, HE; Z250/3M ESPE, FZ) were prepared. After 48h dry storage at 37 degrees C, disks and beams were submitted to piston-on-three-balls (BI) and three-point bending (UNI) tests, respectively. Data were analyzed by Weibull statistics. Fractured surfaces were observed under stereomicroscope and scanning electron microscope. Maximum principal stress (sigma(1)) distribution was determined by finite element analysis (FEA). Maximum sigma(1-BI) and sigma(1-UNI) were compared to FZ strengths calculated by applying the average failure loads to the analytical equations (sigma(a-BI) and sigma(a-UNI)). Results. For BI, characteristic strengths were: 169.9a (FZ), 122.4b (CA) and 104.8c (HE), and for UNI were: 160.3a (FZ), 98.2b (CA) and 91.6b (HE). Weibull moduli ( m) were similar within the same test. CA and HE presented statistically higher m for BI. Surface pores ( BI) and edge flaws ( UNI) were the most frequent fracture origins. sigma(1-BI) was 14% lower than sigma(a-BI.) sigma(1-UNI) was 43% higher than sigma(a-UNI). Significance. Compared to the short-beam uniaxial test, the biaxial test detected more differences among composites and displayed less data scattering for two of the tested materials. Also, biaxial strength was closer to the material`s strength estimated by FEA. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. To assess the elastic modulus (EM), volumetric shrinkage (VS), and polymerization shrinkage stress (PSS) of experimental highly filled nanohybrid composites as a function of matrix composition, filler distribution, and density. Methods. One regular viscosity nanohybrid composite (Grandio, VOCO, Germany) and one flowable nanohybrid composite (Grandio Flow, VOCO) were tested as references along with six highly filled experimental nanohybrid composites (four Bis-GMA-based, one UDMA-based, and one Ormocer (R) -based). The experimental composites varied in filler size and density. EM values were obtained from the ""three-point bending"" load-displacement curve. VS was calculated with Archimedes` buoyancy principle. PSS was determined in 1-mm thick specimens placed between two (poly) methyl methacrylate rods (empty set = 6 mm) attached to an universal testing machine. Data were analyzed using oneway ANOVA, Tukey`s test (alpha = 0.05), and linear regression analyses. Results. The flowable composite exhibited the highest VS and PSS but lowest EM. The PSS was significantly lower with Ormocer. The EM was significantly higher among experimental composites with highest filler levels. No significant differences were found between all other experimental composites regarding VS and PSS. Filler density and size did not influence EM, VS, or PSS. Significance. Neither the filler configuration nor matrix composition in the investigated materials significantly influenced composite shrinkage and mechanical properties. The highest filled experimental composite seemed to increase EM by keeping VS and PSS low; however, matrix composition seemed to be the determinant factor for shrinkage and stress development. The Ormocer, with reduced PSS, deserves further investigation. Filler size and density did not influence the tested parameters. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stress distributions in torsion and wire-loop shear tests were compared using three-dimensional (3-D) linear-elastic finite element method, in an attempt to predict the ideal conditions for testing adhesive strength of dental resin composites to dentin. The torsion test presented lower variability in stress concentration at the adhesive interface with changes in the proportion adhesive thickness/resin composite diameter, as well as lower variability with changes in the resin composite elastic modulus. Moreover, the torsion test eliminated variability from changes in loading distance, and reduced the cohesive fracture tendency in the dentin. The torsion test seems to be more appropriate than wire-loop shear test for testing the resin composite-tooth interface strength. (c) Koninklijke Brill NV, Leiden, 2009

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. This study evaluated the degree of conversion (DC), maximum rate of cure (R(p)(max)), and polymerization stress (PS) developed by an experimental dental composite subjected to different irradiant energies (3,6,12, 24, or 48J/cm(2)) under constant irradiance (500 mw/cm(2)). Methods. DC and R(p)(max) were monitored for 10 min on the bottom surface of 2-mm thick disks and on 150-mu m thick films (representing the top of the specimen) using ATR-FTIR. PS was monitored for 10 min in 2-mm thick disks bonded to two glass rods (O = 5 mm) attached to a universal testing machine. One-way ANOVA/Tukey tests were used and differences in DC and R(p)(max) between top and bottom surfaces were examined using Student`s t-test. Statistical testing was performed at a pre-set alpha of 0.05. Results. For a given surface, DC showed differences among all groups, except at the top between 24 and 48 J/cm(2). R(p)(max) was similar among all groups at the same surface and statistically higher at the top surface. PS also showed significant differences among all groups. Data for 48 J/cm(2) were not obtained due to specimen failure at the glass/composite interface. Significance. Increases in irradiant exposure led to significant increases in DC and PS, but had no effect on R(p)(max) (c) 2008 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. Evaluate the effect of testing system compliance on polymerization stress and stress distribution of composites. Methods. Composites tested were Filtek Z250 (FZ), Herculite (HL), Tetric Ceram (TC), Helio Fill-AP (HF) and Heliomolar (HM). Stress was determined in 1-mm thick specimens, inserted between two rods of either poly(methyl methacrylate), PMMA, or glass. Experimental nominal stress (sigma(exp)) was calculated by dividing the maximum force recorded 5 min after photoactivation by the cross-sectional area of the rod. Composites` elastic modulus (E) was obtained by three-point bending. Data were submitted to one-way ANOVA/Tukey`s test (alpha = 0.05). Stress distribution on longitudinal (sigma(y)) and transverse (sigma(x)) axes of models representing the composites with the highest and lowest E (FZ and HM, respectively) were evaluated by finite element analysis (FEA). Results. sigma(exp) ranged from 5.5 to 8.8 MPa in glass and from 2.6 to 3.4 MPa in PMMA. Composite ranking was not identical in both substrates, since FZ showed or sigma(exp) statistically higher than HM in glass, while in PMMA FZ showed values similar to the other composites. A strong correlation was found between stress reduction (%) from glass to PMMA and composite`s E (r(2) = 0.946). FEA revealed that system compliance was influenced by the composite (FZ led to higher compliance than HM). sigma(x) distribution was similar in both substrates, while cry distribution showed larger areas of compressive stresses in specimens built on PMMA. Significance. sigma(exp) determined in PMMA was 53-68% lower than in glass. Composite ranking varied slightly due to differences in substrates` longitudinal and transverse deformation. (c) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. To investigate the contributions of BisGMA:TEGDMA and filler content on polymerization stress, along with the influence of variables associated with stress development, namely, degree of conversion, reaction rate, shrinkage, elastic modulus and loss tangent for a series of experimental dental composites. Methods. Twenty formulations with BisGMA: TEGDMA ratios of 3: 7, 4: 6, 5: 5, 6: 4 and 7: 3 and barium glass filler levels of 40, 50, 60 or 70 wt% were studied. Polymerization stress was determined in a tensilometer, inserting the composite between acrylic rods fixed to clamps of a universal test machine and dividing the maximum load recorded by the rods cross-sectional area. Conversion and reaction rate were determined by infra-red spectroscopy. Shrinkage was measured by mercury dilatometer. Modulus was obtained by three-point bending. Loss tangent was determined by dynamic nanoindentation. Regression analyses were performed to estimate the effect of organic and inorganic contents on each studied variable, while a stepwise forward regression identified significant variables for polymerization stress. Results. All variables showed dependence on inorganic concentration and monomeric content. The resin matrix showed a stronger influence on polymerization stress, conversion and reaction rate, whereas filler fraction showed a stronger influence on shrinkage, modulus and loss tangent. Shrinkage and conversion were significantly related to polymerization stress. Significance. Both the inorganic filler concentration and monomeric content affect polymerization stress, but the stronger influence of the resin matrix suggests that it may be possible to reduce stress by modifying resin composition without sacrificing filler content. The main challenge is to develop formulations with low shrinkage without sacrificing degree of conversion. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.