65 resultados para Ab initio


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The analysis of the IR nu(co) bands of the 2-ethylsulfinyl-(4`-substituted)-phenylthioacetates 4`-Y-C(6)H(4)SC(O)CH(2)S(O)Et (Y = NO(2) 1, Cl 2, Br 3, H 4, Me 5, OMe 6) supported by B3LY/6-31G(d,p) calculations along with the NBO analysis for 1.4 and 6 and X-ray analysis for 3, indicated the existence of four gauche (q-g-syn, g(3)-syn. g(1)-atin and q-g(2)-syn) conformers for 1-6 The calculations reproduce quite well the experimental results, i e the computed q-g-syn and g3-syn conformers correspond in the IR spectrum (in solution), to the nu(co) doublet higher frequency component of larger intensity, while the computed grant, conformer correspond to the nu(co) doublet lower frequency component (in solution) NBO analysis showed that the n(s) -> pi(center dot)(c1=o2), no(co) -> sigma(c1-s3), no(co) -> sigma(c1-c4) orbital interactions are the main factors which stabilize the q-g-syn, g(3)-syn, g(1)-anti and q-g(2)-syn conformers for 1, 4 and 6 The no(co) -> sigma(c1-s3) interaction which stabilizes the q-g-syn, g(3)-syn and q-g(2)-syn conformers into a larger extent than the granti conformer, is responsible for the larger tto frequencies of the former conformers relative to the latter one. The q-g-syn, g(3)-syn and q-g(2)-syn conformers are further stabilized sigma(c4-s5) -> pi(co)center dot (strong). pi(co)/sigma(c1-c4,) no(co) -> sigma(c6-H17[Et]) (weak) and pi(co)/sigma(c4-c5) pi(co) (strong) orbital interactions. The q-g-syn conformer is also stabilized by sigma(c4-s5) -> pi(center dot)(co) (strong), pi(co)/sigma(c4-c5).no(co) -> sigma(c6-H17[Et]), pi(C9=C11[ph]) -> sigma(c4-H6x-CH2]) (weak). no((SO)) -> sigma(C11-H23[ph]) (medium) pi(co)/sigma(c4-c5)(strong) orbital interactions. The q-g-syn conformei is further stabilized by the n(S5) O((C))(8-) S((SO))(8+) attractive Coulornbic interaction while the q-g(2)-syn conformer is destabilized by the n55 0,8c-0) repulsive Coulombic interaction. This analysis indicates the following conformer stabilization order. q-g-syn, g(3)-syn > g(1)-anti >> q-g(2)-syn X-ray single crystal analysis of 3 indicates that it assumes in the solid a distorted q-g(2)-syn geometry which is stabilized through almost the same orbital and Coulombic interaction which takes place for the q-g(2)-syn conformer, in the gas, along with dipole moment coupling and a series intermolecular C-HO0 interactions. (C) 2010 Elsevier B V All rights reserved

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CD and EPR were used to characterize interactions of oxindole-Schiff base copper(II) complexes with human serum albumin (HSA). These imine ligands form very stable complexes with copper, and can efficiently compete for this metal ion towards the specific N-terminal binding site of the protein, consisting of the amino acid sequence Asp-Ala-His. Relative stability constants for the corresponding complexes were estimated from CD data, using the protein as competitive ligand, with values of log K(CuL) in the range 15.7-18.1, very close to that of [Cu(HSA)] itself, with log K(CuHSA) 16.2. Some of the complexes are also able to interfere in the a-helix structure of the protein, while others seem not to affect it. EPR spectra corroborate those results, indicating at least two different metal species in solution, depending on the imine ligand. Oxidative damage to the protein after incubation with these copper(II) complexes, particularly in the presence of hydrogen peroxide, was monitored by carbonyl groups formation, and was observed to be more severe when conformational features of the protein were modified. Complementary EPR spin-trapping data indicated significant formation of hydroxyl and carbon centered radicals, consistent with an oxidative mechanism. Theoretical calculations at density functional theory (DFT) level were employed to evaluate Cu(II)-L binding energies, L -> Cu(II) donation, and Cu(II) -> L back-donation, by considering the Schiff bases and the N-terminal site of HSA as ligands. These results complement previous studies on cytotoxicity, nuclease and pro-apoptotic properties of this kind of copper(II) complexes, providing additional information about their possibilities of transport and disposition in blood plasma. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human protein Ki-1/57 was first identified through the cross reactivity of the anti-CD30 monoclonal antibody Ki-1; in Hodgkin lymphoma cells. The expression of Ki-1/57 in diverse cancer cells and its phosphorylation in peripheral blood leukocytes after mitogenic activation suggested its possible role in cell signaling. Ki-1/57 interacts with several other regulatory proteins involved in cellular signaling, transcriptional regulation and RNA metabolism, suggesting it may have pleiotropic functions. In a previous spectroscopic analysis, we observed a low content of secondary structure for Ki-1/57 constructs. Here, Circular dichroism experiments, in vitro RNA binding analysis, and limited proteolysis assays of recombinant Ki-1/57(122-413) and proteolysis assays of endogenous full length protein from human HEK293 cells suggested that Ki-1/57 has characteristics of an intrinsically unstructured protein. Small-angle X-ray scattering (SAXS) experiments were performed with the C-terminal fragment Ki-1/57(122-413). These results indicated an elongated shape and a partially unstructured conformation of the molecule in solution, confirming the characteristics of an intrinsically unstructured protein. Experimental curves together with ab initio modeling approaches revealed an extended and flexible molecule in solution. An elongated shape was also observed by analytical gel filtration. Furthermore, sedimentation velocity analysis suggested that Ki-1/57 is a highly asymmetric protein. These findings may explain the functional plasticity of Ki-1/57, as suggested by the wide array of proteins with which it is capable of interacting in yeast two-hybrid interaction assays.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A relativistic four-component study was performed for the XeF(2) molecule by using the Dirac-Coulomb (DC) Hamiltonian and the relativistic adapted Gaussian basis sets (RAGBSs). The comparison of bond lengths obtained showed that relativistic effects on this property are small (increase of only 0.01 angstrom) while the contribution of electron correlation, obtained at CCSD(T) or CCSD-T levels, is more important (increase of 0.05 angstrom). Electron correlation is also dominant over relativistic effects for dissociation energies. Moreover, the correlation-relativity interaction is shown to be negligible for these properties. The electron affinity, the first ionization potential and the double ionization potential are obtained by means of the Fock-space coupled cluster (FSCC) method, resulting in DC-CCSD-T values of 0.3 eV, 12.5 eV and 32.3 eV, respectively. Vibrational frequencies and some anharmonicity constants were also calculated under the four-component formalism by means of standard perturbation equations. All these molecular properties are, in general, ill satisfactory agreement with available experimental results. Finally, a partition in terms of charge-charge flux-dipole flux (CCFDF) contributions derived by means of the quantum theory of atoms in molecules (QTAIM) in non-relativistic QCISD(FC)/3-21G* calculations was carried out for XeF(2) and KrF(2). This analysis showed that the most remarkable difference between both molecules lies on the charge flux contribution to the asymmetric stretching mode, which is negligible in KrF(2) but important in XeF(2). (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chemical mechanism of the (1)PN formation was successfully studied by using the CCSD(T)/6-311++G(3df,3pd) level of theory. The (1)NH(3) + (3)PH and (4)P + NH(3) reaction paths are not energetically favorable to form the (1)PN molecule. However, the (3)NH + (3)PH, (4)N + (3)PH(3), (4)N + (3)PH, (4)P + (3)NH, and (4)P + (2)NH(2) reaction paths to form the (1)PN molecule are only energetically favorable by taking place through specific transition states to form the (1)PN molecule. The NH(3) + (3)PH, (4)N + (1)PH(3), NH(3) + (4)P, and (4)N + (2)PH(2) reactions are spin-forbidden and the probability of hopping for these reactions was estimated to be 0 by the Landau-Zener theory. This is the first detailed study on the chemical mechanism for the (1)PN formation. (C) 2009 Elsevier B.V. All rights reserved.