89 resultados para 3d transition metal complexes
Resumo:
The heteroaggregation behavior between a new class of nonplanar cationic beta-octabrominated meso-alkylpyridinium zinc(II)-porphyrins (beta-Br(8)(ZnP)) and anionic tetrasulfonated metallophthalocyanines (MTSPc, M = Ni(II) and Cu(II)) has been studied by UV-Vis electronic spectroscopy, in dimethylsulfoxide (DMSO) solution. The heteroaggregate stoichiometry and the association constants were determined by means of Job plots. Dimers and unexpected trimers, taking into account the existence of axially coordinated DMSO molecules to the central metal in both beta-Br(8)(ZnP) and MTSPc complexes, are formed in solution. The spectroscopic properties of the heteroaggregates are markedly different from those observed in the correspondent planar cationic derivatives, the heteroaggregates showing major changes predominantly in the beta-Br(8)(ZnP) Soret band region and minor effects in the MTSPc Q bands. The observed changes in the Soret band region (red/blue shifts, decrease in the absorption intensities) depend on the nature of the alkyl substituent attached to the meso-pyridinium group. The greater versatility of the nonplanar porphyrins accommodating the meso-substituents in out-of-plane and in-plane conformations is proposed to explain the observed stoichiometries and the differences on the heteroaggregates spectroscopic properties for each beta-Br(8)(ZnP) compound. The likely conformations assumed by the meso-substituents in these beta-Br(8)(ZnP) compounds and its spectroscopic characteristics are in accordance with the participation of the substituents as the main factor on the extent of the observed red-shifted spectra in nonplanar porphyrins. The obtained association constants (K(IP)) for the dimers and trimers are lower than those previously found for the similar planar cationic porphyrin systems, due to the lack of extensive pi-pi interactions and to the less effective approximation between the ionic groups, resulting in loosened heteroaggregates, particularly for the trimeric systems. Furthermore, the experimental results suggest that the NiTSPc is more distorted in DMSO solution than the CuTSPc derivative, favoring the interaction with the nonplanar beta-Br(8)(ZnP) compounds. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Multiconfiguration second-order perturbation theory, including relativistic effects and spin-orbit coupling, has been employed to investigate the nature of the chemical bonding in the ground state of Tc(2) and Re(2). The Tc(2) ground state is found to be a 0(g)(+) state, with an effective bond order (EBO) of 4.4, and a dissociation energy of 3.25 eV. The Re(2) ground state is a 1(g) state, with EBO = 4.3. Almost degenerate to it, is a 0(g)(+) state (T(e) = 77 cm(-1)), with EBO = 4.1. Experimental evidence also indicates that the ground state is of 1(g) nature. The dissociation energy is computed to be 5.0 eV in agreement with an experimental estimate of 4 +/- 1 eV.
Resumo:
New basis sets of the atomic natural orbital (ANO) type have been developed for the lanthanide atoms La-Lu. The ANOs have been obtained from the average density matrix of the ground and lowest excited states of the atom, the positive ions, and the atom in an electric field. Scalar relativistic effects are included through the use of a Douglas-Kroll-Hess Hamiltonian. Multiconfigurational wave functions have been used with dynamic correlation included using second-order perturbation theory (CASSCF/CASPT2). The basis sets are applied in calculations of ionization energies and some excitation energies. Computed ionization energies have an accuracy better than 0.1 eV in most cases. Two molecular applications are inluded as illustration: the cerium diatom and the LuF3 molecule. In both cases it is shown that 4f orbitals are not involved in the chemical bond in contrast to an earlier claim for the latter molecule.
Resumo:
In this work, the surface-enhanced Raman scattering (SERS) spectra of pyridine (py) on thin films of Co and Ni electrodeposited on an Ag electrode activated by oxidation-reduction cycles (ORC) are presented. The SERS spectra from the thin films were compared to those of py on activated bare transition metal electrodes. It was verified that the SERS spectra of py on 3 monolayers (ML)-thick films of Ni and Co presented only bands assignable to the py adsorbed on transition metal surfaces. It was also observed that even for 50 ML-thick transition metal films, the py SERS intensity was ca. 40% of the intensity from the 3 ML-thick films. The relative intensities of the SERS bands depended on the thickness of the films, and for films thicker than 7 ML for Co and 9 ML for Ni they were very similar to those of the bare transition metal electrodes. The transition metal thin films over Ag activated electrodes presented SERS intensities 3 orders of magnitude higher than the ones from bare transition metal electrodes. These films are more suitable to study the adsorption of low Raman cross-section molecules than are ORC-activated transition metal electrodes.
Resumo:
The catalase mimetic complex Mn(III)-salen chloride (EUK8) was found to be pro-oxidant under low hydrogen peroxide concentrations. The increase in the fluorescence rate of the probe 1,2,3-dihydrorhodamine (DHR) in solution, as well as the carbonyl content of human serum albumin were found to be maximum at H(2)O(2):EUK8 molar ratios ranging from 0 to 2, supporting previous findings regarding the mechanism of EUK8 catalase activity and the formation of highly oxidative Mn(V)-O(2-) species. This pro-oxidant effect is precluded by the presence of glutathione. Cytotoxicity to HeLa cells, as probed by increased rate of oxidation of intracellular DHR, was not observed. Our findings suggest that the combination of H(2)O(2) and EUK8 at specific molar ratios, in the absence of reductants/antioxidants, induces the oxidation of organic molecules. It is shown that the fluorimetric determination of pro-oxidant activity of metal complexes is more sensitive than the colorimetric quantification of protein carbonyl content. The implications of our findings with respect to the somewhat confusing results arising from in vivo studies of EUK8 and other Mn(III) anti-oxidant metal complexes are discussed.
Resumo:
The electronic structure and chemical bonding of the ground and low-lying Lambda - S and Omega states of Ta(2) were investigated at the multiconfiguration second-order perturbation theory (CASSCF//CASPT2) level. The ground state of Ta(2) is computed to be a X(3)Sigma(-)(g) state (R(e) = 2.120 angstrom, omega(e) = 323 cm(-1), and D(e) = 4.65 eV), with two low-lying singlet states close to it (a(1) Sigma(+)(g) : T(e) = 409 cm(-1), R(e) = 2.131 angstrom, and omega(e) = 313 cm(-1); b(1) Gamma(g): T(e) = 1, 038 cm(-1), R(e) = 2.127 angstrom, and omega(e) = 316 cm(-1)). These electronic states are derived from the same electronic configuration: vertical bar 13 sigma(2)(g)14 sigma(2)(g)7 delta(2)(g)13 pi(4)(u)>. The effective bond order of the X(3) Sigma(-)(g) state is 4.52, which indicates that the Ta atoms are bound by a quintuple chemical bond. The a(1) Sigma(+)(g) state interacts strongly with the X(3)Sigma(-)(g) g ground state by a second-order spin-orbit interaction, giving rise to the (1)0(g)(+) (ground state) (dominated by the X(3)Sigma(-)(g) Lambda - S ground state) and (9)0(g)(+) (dominated by the a(1) Sigma(+)(g) Lambda - S state) Omega states. These results are in line with those reported for the group 5B homonuclear transition metal diatomics. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111: 1306-1315, 2011
Resumo:
Multiconfigurational SCF and second-order perturbation theory have been employed to study seven low-lying singlet and triplet electronic states of the Mo-2 molecule. The bond order of the ground state has been analyzed based on the effective bond order (EBO), indicating that a fully developed sextuple bond is formed between the two Mo atoms. The experimentally observed excited states a(3)Sigma(+)(u) and A(1)Sigma(+)(u) have been determined and the so-called (3)Lambda excited state identified as the b(3)Sigma(+)(u) state, in agreement with experimental expectations. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The products formed from the reaction of emeraldine base polyaniline (EB-PANI) with Fe(III) ions in N-methyl-pyrrolidone (NMP), dimethylacetamide (DMA), dimethylformamide (DMF) and m-cresol media have been investigated using UV-VIS-NIR and resonance Raman (lambda(0) = 632.8 and 1064 nm) spectroscopies. Through these results it was verified that the different PANI forms in solution can be formed by the suitable choice of the solvent. The behavior of Fe(III)/EB-PANI in different solvents was rationalized in terms of the interactions among Fe(III) ions, EB-PANI and solvent. In basic NMP, DMA and DMF media, the reaction of Fe(III) with EB-PANI yields EB-PANI doping giving ES-PANI and/or the EB-PANI oxidation to PB-PANI. The formation of ES-PANI is favored in DMF while PB-PANI is formed in a greater extension in NMP and DMA. In acidic m-cresol, only ES-PANI is produced in Fe(III)/EB-PANI solutions indicating the important role played by the solvent in the nature of the product. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Excited-state dynamics in fac-[Re(CO)(3)(Me(4)phen)(cis-L)](+) (Me(4)phen = 3,4,7,8-tetramethyl-1,10-phenanthroline, L = 4-styrylpyridine (stpy) or 1,2-bis(4-pyridyl)ethylene (bpe)) were investigated by steady-state and time-resolved techniques. A complex equilibrium among three closely lying excited states, 3IL(cis-L), (3)MLCT(Re -> me4phen), and (3)IL(Me4phen), has been established. Under UV irradiation, cis-to-trans isomerization of coordinated cis-L is observed with a quantum yield of 0.15 in acetonitrile solutions. This photoreaction competes with radiative decay from (3)MLCT(Re -> Me4phen) and (3)IL(Me4phen) excited states, leading to a decrease in the emission quantum yield relative to the nonisomerizable complex fac-[Re(CO)(3)(Me(4)phen)(bpa)](+) (bpa = 1,2-bis(4-pyridyl)ethane). From temperature-dependent time-resolved emission measurements in solution and in poly(methyl methacrylate) (PMMA) films, energy barriers (Delta E(a)) for interconversion between (3)MLCT(Re -> me4Phen) and (3)IL(Me4phen) emitting states were determined. For L = cis-stpy, Delta E(a) = 11 (920 cm(-1)) and 15 kJ mol(-1) (1254 cm(-1)) in 5:4 propionitrile/butyronitrile and PMMA, respectively. For L = cis-bpe, Delta E(a) = 13 kJ mol(-1) (1087 cm(-1)) in 5:4 propionitrile/butyronitrile. These energy barriers are sufficient to decrease the rate constant for internal conversion from higher-lying (3)IL(me4phen) state to (3)MLCT(Re -> Me4phen), k(i) congruent to 10(6) s(-1). The decrease in rate allows for the observation of intraligand phosphorescence, even in fluid medium at room temperature. Our results provide additional insight into the role of energy gap and excited-state dynamics on the photochemical and photophysical properties of Re(I) polypyridyl complexes.
Resumo:
The influence of molecular oxygen in the interactions of emeraldine base form of polyaniline (EB-PANI) with Fe(III) or Cu(II) ions in 1-methyl-2-pyrrolidinone (NMP) solutions has been investigated by UV-vis-NIR, resonance Raman and electron paramagnetic resonance (EPR) spectroscopies. Through the set of spectroscopic results it was possible to rationalize the role Of O(2) and to construct a scheme of preferential routes occurring in the interaction of EB-PANI with Fe(III) or Cu(II). Solutions of 4.0 mmol L(-1) EB-PANI with 0.8, 2.0 and 20 mmol L(-1) Fe(III) or Cu(II) ions in NMP were investigated and the main observed reactions were EB-PANI oxidation to pernigraniline (PB-PANI) and EB-PANI doping process by pseudo-protonation, or by a two-step redox process. In the presence Of O(2), PB-PANI is observed in all Fe(III)/EB solutions and EB-PANI doping only occurs in solutions with high Fe(III) concentrations through pseudo-protonation. On the other hand, emeraldine salt (ES-PANI) is formed in all Fe(III)/EB solutions under N(2) atmosphere and, in this case, doping occurs both by the pseudo-protonation and two-step redox mechanisms. In all Cu(II)/EB solutions PB-PANI is formed both in the presence and absence of O(2), and only for solutions with high Cu(II) concentrations doping process occurs in a very low degree. The most important result from EPR spectra was providing evidence for redox steps. The determined Cu(II) signal areas under oxygen are higher than under N(2) and, further. the initial metal proportions (1:2:20) are maintained in these spectra, indicating that Cu(I) formed are re-oxidized by O(2) and. so, Cu(II) ions are being recycled. Consistently, for the solutions prepared under nitrogen, the corresponding areas and proportions in the spectra are much lower, confirming that a partial reduction of Cu(II) ions actually occurs. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Nitrate reduction on palladium multilayers deposited on platinum single crystal electrodes was studied by cyclic voltammetry and FTIR spectroscopy in acid and alkaline media. The results are compared with those obtained with bulk palladium single crystals. The reaction is sensitive to the electrode surface structure, the reactivity depending on the solution pH. In acid solution nitrate was reduced at potentials below the potential of zero total charge (pztc), when the electrode is negatively charged. Competition between nitrate, hydrogen and anion adsorption and NO formation and accumulation at the surface are proposed as the main reasons for the slow reaction rate. On the bulk palladium single crystal electrodes, NO formation leads to a fast blockage of the surface resulting in a very low activity for nitrate reduction. In alkaline solution, nitrate is reduced at more positive potentials with significantly higher current being measured on the Pd multilayer on Pt(100) electrode. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Ordered intermetallic phases of Pt with several transition metals have been prepared and their electrocatalytic properties studied. In light of these tests it is proposed that these catalysts could be used as electrodes in fuel cells, as they combine an excellent capacity to adsorb organic fuels at the Pt sites with low susceptibility to being poisoned by intermediates and reaction products at the transition-metal sites. An experimental procedure used to obtain the four intermetallic phases Pt-M (M = Mn, Pb, Sb and Sn) is described. The phases thus produced were characterized by X-ray diffraction, scanning electron microscopy with surface analysis by energy-dispersive X-ray spectrometry, scanning tunneling microscopy and X-ray photoelectron spectroscopy. The data thus obtained support the conclusion that the method described here is highly effective for the preparation of Pt-M phases featuring a range of structural and electronic modifications that will allow a useful relation to be established between their physicochemical properties and predicted electrocatalytic activity. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A new vanadium (IV) complex with the monoanion of 2,3-dihydroxypyridine (H(2)dhp), or 3-hydroxy-2(1H)-pyridone, was synthesized, characterized by physicochemical techniques and tested biologically. The EPR data for the [VO(Hdhp)(2)] complex in DMF are: g(x) = 1.9768, g(y) = 1.9768 and g(z) = 1.9390; A values (10(-4) cm(-1)): A(x), 59.4; A(y//), 59.4; A(z), 171.0. The vV=O band in the IR spectrum of the complex is at 986 cm(-1). The complex is paramagnetic, with mu(eff) = 1.65 BM (d(1), spin-only) at 25 degrees C. The irreversible oxidation process [V(V)/V(IV)] of the [VO(Hdhp)(2)] complex, as revealed in a cyclic voltammogram, occurs at 876 mV. The calculated molecular structure of [VO(Hdhp)(2)] shows the vanadium(IV) center in a distorted square pyramidal environment, with the oxo ligand in the apical position and the oxygen donor atoms of the Hdhp ligands in the basal positions. The ability of [VO(Hdhp)(2)] to mimic insulin, and its toxicity to hepato-biliary functions, were investigated in streptozotocin-induced diabetic rats and it was concluded that the length of treatment and the amount of [VO(Hdhp)(2)] administered were effective in reducing experimental diabetes.
Resumo:
We employed the Density Functional Theory along with small basis sets, B3LYP/LANL2DZ, for the study of FeTIM complexes with different pairs of axial ligands (CO, H(2)O, NH(3), imidazole and CH(3)CN). These calculations did not result in relevant changes of molecular quantities as bond lengths, vibrational frequencies and electronic populations supporting any significant back-donation to the carbonyl or acetonitrile axial ligands. Moreover, a back-donation mechanism to the macrocycle cannot be used to explain the observed changes in molecular properties along these complexes with CO or CH(3)CN. This work also indicates that complexes with CO show smaller binding energies and are less stable than complexes with CH(3)CN. Further, the electronic band with the largest intensity in the visible region (or close to this region) is associated to the transition from an occupied 3d orbital on iron to an empty pi* orbital located at the macrocycle. The energy of this Metal-to-Ligand Charge Transfer (MLCT) transition shows a linear relation to the total charge of the macrocycle in these complexes as given by Mulliken or Natural Population Analysis (NPA) formalisms. Finally, the macrocycle total charge seems to be influenced by the field induced by the axial ligands. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Oxides RNiO(3) (R - rare-earth, R not equal La) exhibit a metal-insulator (MI) transition at a temperature T(MI) and an antiferromagnetic (AF) transition at T(N). Specific heat (C(P)) and anelastic spectroscopy measurements were performed in samples of Nd(1-x)Eu(x)NiO(3), 0 <= x <= 0.35. For x - 0, a peak in C(P) is observed upon cooling and warming at essentially the same temperature T(MI) - T(N) similar to 195 K, although the cooling peak is much smaller. For x >= 0.25, differences between the cooling and warming curves are negligible, and two well defined peaks are clearly observed: one at lower temperatures that define T(N), and the other one at T(MI). An external magnetic field of 9 T had no significant effect on these results. The elastic compliance (s) and the reciprocal of the mechanical quality factor (Q(-1)) of NdNiO(3), measured upon warming, showed a very sharp peak at essentially the same temperature obtained from C(P), and no peak is observed upon cooling. The elastic modulus hardens below T(MI) much more sharply upon warming, while the cooling and warming curves are reproducible above T(MI). Conversely, for the sample with x - 0.35, s and Q(-1) curves are very similar upon warming and cooling. The results presented here give credence to the proposition that the MI phase transition changes from first to second order with increasing Eu doping. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3549615]