84 resultados para 3-dimensional Observations
Resumo:
During a polymorphism screening of hydroxybenzophenone derivatives, a monohydrate pseudopolymorph of (3,4-dihydroxyphenyl)(phenyl)methanone, C(13)H(10)O(3)center dot H(2)O, (I), was obtained. Structural relationships and the role of water in crystal assembly were established on the basis of the known anhydrous form [Cox, Kechagias & Kelly (2008). Acta Cryst. B64, 206-216]. The crystal packing of (I) is stabilized by classical intermolecular O-H...O hydrogen bonds, generating a three-dimensional network.
Resumo:
The width of a closed convex subset of n-dimensional Euclidean space is the distance between two parallel supporting hyperplanes. The Blaschke-Lebesgue problem consists of minimizing the volume in the class of convex sets of fixed constant width and is still open in dimension n >= 3. In this paper we describe a necessary condition that the minimizer of the Blaschke-Lebesgue must satisfy in dimension n = 3: we prove that the smooth components of the boundary of the minimizer have their smaller principal curvature constant and therefore are either spherical caps or pieces of tubes (canal surfaces).
Resumo:
The 1,3,4-oxadiazinane ring in the title compound, C(18)H(18)N(2)O(4), is in a twisted boat conformation. The two carbonyl groups are orientated towards the same side of the molecule. The dihedral angle between the planes of the benzene rings is 76.6 (3)degrees. Molecules are sustained in the three-dimensional structure by a combination of C-H center dot center dot center dot O, C-H center dot center dot center dot pi and pi-pi [shortest centroid-centroid distance = 3.672 (6) angstrom] interactions.
Resumo:
Continuing our series of papers on the three-dimensional (3D) structure and accurate distances of planetary nebulae (PNe), we present here the results obtained for PN NGC 40. Using data from different sources and wavelengths, we construct 3D photoionization models and derive the physical quantities of the ionizing source and nebular gas. The procedure, discussed in detail in the previous papers, consists of the use of 3D photoionization codes constrained by observational data to derive the 3D nebular structure, physical and chemical characteristics, and ionizing star parameters of the objects by simultaneously fitting the integrated line intensities, the density map, the temperature map, and the observed morphologies in different emission lines. For this particular case we combined hydrodynamical simulations with the photoionization scheme in order to obtain self-consistent distributions of density and velocity of the nebular material. Combining the velocity field with the emission-line cubes we also obtained the synthetic position-velocity plots that are compared to the observations. Finally, using theoretical evolutionary tracks of intermediate-and low-mass stars, we derive the mass and age of the central star of NGC 40 as (0.567 +/- 0.06) M(circle dot) and (5810 +/- 600) yr, respectively. The distance obtained from the fitting procedure was (1150 +/- 120) pc.
Resumo:
The objective of this study was to compare the three-dimensional lower extremity running kinematics of young adult runners and elderly runners. Seventeen elderly adults (age 67-73 years) and 17 young adults (age 26-36 years) ran at 3.1ms-1 on a treadmill while the movements of the lower extremity during the stance phase were recorded at 120Hz using three-dimensional video. The three-dimensional kinematics of the lower limb segments and of the ankle and knee joints were determined, and selected variables were calculated to describe the movement. Our results suggest that elderly runners have a different movement pattern of the lower extremity from that of young adults during the stance phase of running. Compared with the young adults, the elderly runners had a substantial decrease in stride length (1.97 vs. 2.23m; P=0.01), an increase in stride frequency (1.58 vs. 1.37Hz; P=0.002), less knee flexion/extension range of motion (26 vs. 33; P=0.002), less tibial internal/external rotation range of motion (9 vs. 12; P0.001), larger external rotation angle of the foot segment (toe-out angle) at the heel strike (-5.8 vs. -1.0; P=0.009), and greater asynchronies between the ankle and knee movements during running. These results may help to explain why elderly individuals could be more susceptible to running-related injuries.
Resumo:
We performed Synchrotron X-ray diffraction (XRD) analyses of internal residual stresses in monolithic samples of a newly developed Li(2)O-Al(2)O(3)-SiO(2) (LAS) glass-ceramic produced by sintering and in a commercial LAS glass-ceramic, CERAN (R), produced by the traditional crystal nucleation and growth treatments. The elastic constants were measured by instrumented indentation and a pulse-echo technique. The thermal expansion coefficient of virgilite was determined by high temperature XRD and dilatometry. The c-axis contracts with the increasing temperature whereas the a-axis does not vary significantly. Microcracking of the microstructure affects the thermal expansion coefficients measured by dilatometry and thermal expansion hysteresis is observed for the sintered glass-ceramic as well as for CERAN (R). The measured internal stress is quite low for both glass-ceramics and can be explained by theoretical modeling if the high volume fraction of the crystalline phase (virgilite) is considered. Using a modified Green model, the calculated critical (glass) island diameter for spontaneous cracking agreed with experimental observations. The experimental data collected also allowed the calculation of the critical crystal grain diameters for grain-boundary microcracking due to the anisotropy of thermal expansion of virgilite and for microcracking in the residual glass phase surrounding the virgilite particles. All these parameters are important for the successful microstructural design of sintered glass-ceramics.
Resumo:
This paper addresses the development of a hybrid-mixed finite element formulation for the quasi-static geometrically exact analysis of three-dimensional framed structures with linear elastic behavior. The formulation is based on a modified principle of stationary total complementary energy, involving, as independent variables, the generalized vectors of stress-resultants and displacements and, in addition, a set of Lagrange multipliers defined on the element boundaries. The finite element discretization scheme adopted within the framework of the proposed formulation leads to numerical solutions that strongly satisfy the equilibrium differential equations in the elements, as well as the equilibrium boundary conditions. This formulation consists, therefore, in a true equilibrium formulation for large displacements and rotations in space. Furthermore, this formulation is objective, as it ensures invariance of the strain measures under superposed rigid body rotations, and is not affected by the so-called shear-locking phenomenon. Also, the proposed formulation produces numerical solutions which are independent of the path of deformation. To validate and assess the accuracy of the proposed formulation, some benchmark problems are analyzed and their solutions compared with those obtained using the standard two-node displacement/ rotation-based formulation.
Resumo:
Because shape is an assessment of the three-dimensional form of a particle, it may be described in terms of sphericity (Psi), which is a measure of how closely a particle approaches a spherical configuration. In this study, Darcy`s law and the Kozeny-Carman model for fluid flow through porous media were applied to packed beds to determine the sphericity (Psi) of apatite particles. The beds were composed of glass spheres or particles of apatite (igneous from Brazil and sedimentary from the United States) of three classes of size (Class 1: -297 +210 mu m; Class 2: -210 +149 mu m; Class 3: -149 +105 mu m). Glass spheres were used to validate the model because of its known sphericity (Psi = 1.00). Apatite particles, either igneous or sedimentary, showed very close values for particle sphericity (Psi approximate to 0.6). Observations on particle images conducted by scanning electron microscopy illustrated that igneous (Psi = 0.623) and sedimentary (Psi = 0.644) particles of apatite of Class 2 predominantly exhibit elongated shape. The close value of particle sphericity (Psi approximate to 0.6) showed by either igneous or sedimentary apatite may be justified by the similarity in particle shape.
Resumo:
Systems of distributed artificial intelligence can be powerful tools in a wide variety of practical applications. Its most surprising characteristic, the emergent behavior, is also the most answerable for the difficulty in. projecting these systems. This work proposes a tool capable to beget individual strategies for the elements of a multi-agent system and thereof providing to the group means on obtaining wanted results, working in a coordinated and cooperative manner as well. As an application example, a problem was taken as a basis where a predators` group must catch a prey in a three-dimensional continuous ambient. A synthesis of system strategies was implemented of which internal mechanism involves the integration between simulators by Particle Swarm Optimization algorithm (PSO), a Swarm Intelligence technique. The system had been tested in several simulation settings and it was capable to synthesize automatically successful hunting strategies, substantiating that the developed tool can provide, as long as it works with well-elaborated patterns, satisfactory solutions for problems of complex nature, of difficult resolution starting from analytical approaches. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Background: The presence of the periodontal ligament (PDL) makes it possible to absorb and distribute loads produced during masticatory function and other tooth contacts into the alveolar process via the alveolar bone proper. However, several factors affect the integrity of periodontal structures causing the destruction of the connective matrix and cells, the loss of fibrous attachment, and the resorption of alveolar bone. Methods: The purpose of this study was to evaluate the stress distribution by finite element analysis in a PDL in three-dimensional models of the upper central incisor under three different load conditions: 100 N occlusal loading at 45 degrees (model 1: masticatory load); 500 N at the incisal edge at 45 degrees (model 2: parafunctional habit); and 800 N at the buccal surface at 90 degrees (model 3: trauma case). The models were built from computed tomography scans. Results: The stress distribution was quite different among the models. The most significant values (harmful) of tensile and compressive stresses were observed in models 2 and 3, with similarly distinct patterns of stress distributions along the PDL. Tensile stresses were observed along the internal and external aspects of the PDL, mostly at the cervical and middle thirds. Conclusions: The stress generation in these models may affect the integrity of periodontal structures. A better understanding of the biomechanical behavior of the PDL under physiologic and traumatic loading conditions might enhance the understanding of the biologic reaction of the PDL in health and disease. J Periodontol 2009;80:1859-1867.
Resumo:
Aceria inusitata Britto and Navia n. sp. (Acari: Eriophyidae) is described from protogynes, deutogynes and two forms of males occurring under a ""patches of webbing"" from ""pau-brasil,"" Caesalpinia echinata L. (Caesalpiniaceae), leaves. This is the first example of a deuterogynous eriophyid mite in tropical regions with two forms of males, one resembling the protogyne and the other the deutogyne. In addition, biological observations are presented. Aberoptus cerostructor Flechtmann, is given a new generic assignment, Aceria cerostructor n. comb.
Resumo:
Real time three-dimensional echocardiography (RT3DE) has been demonstrated to be an accurate technique to quantify left ventricular (LV) volumes and function in different patient populations. We sought to determine the value of RT3DE for evaluating patients with hypertrophic cardiomyopathy (HCM), in comparison with cardiac magnetic resonance imaging (MRI). Methods: We studied 20 consecutive patients with HCM who underwent two-dimensional echocardiography (2DE), RT3DE, and MRI. Parameters analyzed by echocardiography and MRI included: wall thickness, LV volumes, ejection fraction (LVEF), mass, geometric index, and dyssynchrony index. Statistical analysis was performed by Lin agreement coefficient, Pearson linear correlation and Bland-Altman model. Results: There was excellent agreement between 2DE and RT3DE (Rc = 0.92), 2DE and MRI (Rc = 0.85), and RT3DE and MRI (Rc = 0.90) for linear measurements. Agreement indexes for LV end-diastolic and end-systolic volumes were Rc = 0.91 and Rc = 0.91 between 2DE and RT3DE, Rc = 0.94 and Rc = 0.95 between RT3DE and MRI, and Rc = 0.89 and Rc = 0.88 between 2DE and MRI, respectively. Satisfactory agreement was observed between 2DE and RT3DE (Rc = 0.75), RT3DE and MRI (Rc = 0.83), and 2DE and MRI (Rc = 0.73) for determining LVEF, with a mild underestimation of LVEF by 2DE, and smaller variability between RT3DE and MRI. Regarding LV mass, excellent agreement was observed between RT3DE and MRI (Rc = 0.96), with bias of -6.3 g (limits of concordance = 42.22 to -54.73 g). Conclusion: In patients with HCM, RT3DE demonstrated superior performance than 2DE for the evaluation of myocardial hypertrophy, LV volumes, LVEF, and LV mass.
Resumo:
Introduction. Two-dimensional (2-D) echocardiography is an excellent alternative method to perform endomyocardial biopsies (EB) in special situations, mainly when the patient is in a critical state and cannot go to the catheterization laboratory or when there are contraindications to the use of fluoroscopy as in the pregnancy. Objective. This single-center experience analyzed the last 25 years use of an EB technique guided by echocardiography realized at the bedside on critical patients. Methods. From 1985 to 2010, we performed 76 EB guided by 2-D echocardiography on 59 patients, among whom 38 (64.4%) were critically ill with examinations at the bedside; among 10 (16.9%) subjects, the procedure was carried out simultaneously with fluoroscopy for safety`s sake during the learning period. In addition, 8 (13.6%) were unavailable for fluoroscopy, and 3 (5.1%) required a hybrid method due to an intracardiac tumor. Results. The main adverse effects included local pain (n = 4, 5.6%); difficult out successful puncture due to previous biopsies (n = 4, 5.6%); local hematoma without major consequences (n = 3, 4.2%); failed but ultimately successful puncture on the first try due to previous biopsies or (n = 3, 4.2%); obesity and immediate postoperative period with impossibility to pass the bioptome into the right ventricle; however 2 days later the procedure was repeated successfully by echocardiography (n = 1, 1.4%). All myocardial specimens displayed suitable size. There were no undesirable extraction effects on the tricuspid valve tissue. In this series, there was no case of death, hemopericardium, or other major complication as a direct consequence of the biopsy. Conclusion. 2-D echocardiography is a special feature to guide EB is mainly in critically ill patients because it can be performed at the bedside without additional risk or disadvantages of fluoroscopy. The hybrid method associating 2-D echocardiography and fluoroscopy allows the procedure in different situations such as intracardiac tumor cases.
Resumo:
Objective: To evaluate the effect of maternal oral hydration on amniotic fluid index (AFI) in pregnancies with fetal gastroschisis. Methods: AFI was evaluated at 24-hour intervals, during 4 consecutive days, under a continuous maternal oral water hydration regimen, in singleton pregnancies with isolated fetal gastroschisis. Results: Nine pregnancies were examined at a mean gestational age of 31.6 weeks (+/-1.4) and mean maternal daily oral water intake was 3,437 (+/-810) ml. Mean AFI on days 0-3 were 13.2 (+/-2.9), 14.8 (+/-3.3), 14.5 (+/-3.1) and 14.8 (+/-2.6), respectively. AFI on day 0 was significantly lower compared to all the other 3 days (p = 0.01 and 0.02). Significant correlation was found in relative difference in AFI between day 0 and day 1 and gestational age (r = -0.67, p = 0.05) and the amount of water intake in the previous 24 h (r = 0.76, p = 0.02). Conclusion: Maternal oral water hydration significantly increases AFI in pregnancies with isolated fetal gastroschisis. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Objective: To evaluate the precision of three-dimensional ultrasonography (3DUS) in estimating the ipsilateral lung volume and the potential of this measurement to predict neonatal death in congenital diaphragmatic hernia (CDH). Methods: Between January 2002 and December 2004, the ipsilateral lung volumes were assessed by 3DUS using the technique of rotation of the multiplan imaging in 39 fetuses with CDH. The observed/ expected ipsilateral lung volume ratios (o/e-IpsiFLVR) were compared to the lung/head ratios (LHR) and to the observed/ expected total fetal lung volume ratios (o/e-TotFLVR) as well as to postnatal death. Results: Ipsilateral lung volumes (median 0.12, range 0.01-0.66) were more reduced than the total lung volumes (median 0.52, range 0.11-0.95, p < 0.001) in CDH. The bias and precision of 3DUS in estimating ipsilateral lung volumes were -0.61 and 0.99 cm 3, respectively, with absolute limits of agreement from -2.56 to +1.33 cm(3). The o/e-IpsiFLVR was lower in neonatal death cases (median 0.09, range 0.01-0.46) than in survivals (median 0.18, range 0.01-0.66), but this difference was not statistically significance (p > 0.05). The sensitivity, speci-ficity, (positive and negative) predictive values and accuracy of o/e-IpsiFLVR in predicting neonatal death was 52.6% (10/19), 83.3% (10/12), 83.3% (10/12), 52.6% (10/19) and 64.5% (20/31), respectively. Conclusion: Although the ipsilateral lung volume can be measured by 3DUS, it cannot be used to predict neonatal death when considering it alone. However, it is important to measure it to calculate the total fetal lung volumes as the o/e-TotFLVR has the best efficacy in predicting neonatal death in isolated CDH. Copyright (C) 2008 S. Karger AG, Basel