62 resultados para tumor cell surface antigens
Resumo:
Background: Changes in the proteoglycans glypican and syndecan-4 have been reported in several pathological conditions, but little is known about their expression in the heart during diabetes. The aim of this study was to investigate in vivo heart function changes and alterations in mRNA expression and protein levels of glypican-1 and syndecan-4 in cardiac and skeletal muscles during streptozotocin (STZ)-induced diabetes. Methods: Diabetes was induced in male Wistar rats by STZ administration. The rats were assigned to one of the following groups: control (sham injection), after 24 hours, 10 days, or 30 days of STZ administration. Echocardiography was performed in the control and STZ 10-day groups. Western and Northern blots were used to quantify protein and mRNA levels in all groups. Immunohistochemistry was performed in the control and 30-day groups to correlate the observed mRNA changes to the protein expression. Results: In vivo cardiac functional analysis performed using echocardiography in the 10-day group showed diastolic dysfunction with alterations in the peak velocity of early (E) diastolic filling and isovolumic relaxation time (IVRT) indices. These functional alterations observed in the STZ 10-day group correlated with the concomitant increase in syndecan-4 and glypican-1 protein expression. Cardiac glypican-1 mRNA and skeletal syndecan-4 mRNA and protein levels increased in the STZ 30-day group. On the other hand, the amount of glypican in skeletal muscle was lower than that in the control group. The same results were obtained from immunohistochemistry analysis. Conclusion: Our data suggest that membrane proteoglycans participate in the sequence of events triggered by diabetes and inflicted on cardiac and skeletal muscles.
Resumo:
Despite recent advances, patients with malignant brain tumors still have a poor prognosis. Glioblastoma (WHO grade 4 astrocytoma), the most malignant brain tumor, represents 50% of all astrocytomas, with a median survival rate of <1 year. It is, therefore, extremely important to search for new diagnostic and therapeutic approaches for patients with glioblastoma. This study describes the application of superparamagnetic nano-particles of iron oxide, as well as monoclonal antibodies, of immunophenotypic significance, conjoined to quantum dots for the ultrastructural assessment of glioblastoma cells. For this proposal, an immunophenotypic study by flow cytometry was carried out, followed by transmission electron microscopy analysis. The process of tumor cell labeling using nanoparticles can successfully contribute to the identification of tumorigenic cells and consequently for better understanding of glioblastoma genesis and recurrence. In addition, this method may help further studies in tumor imaging, diagnosis, and prognostic markers detection.
Resumo:
Background and Purpose: Radiofrequency (RF) ablation of renal tumors is a major technique for tumor cell destruction while preserving healthy renal parenchyma. There is no consensus in the literature regarding the optimal temperature, impedance, and time for RF application for effective cell destruction. This study investigated two variables while keeping time unchanged: Temperature for RF cell destruction and tissue impedance in dog kidneys. Materials and Methods: Sixteen dogs had renal punctures through videolaparoscopy for RF interstitial tissue ablation. A RF generator was applied for 10 minutes to the dog's kidney at different target temperatures: 80 degrees C, 90 degrees C, and 100 degrees C. On postoperative day14, the animals were sacrificed and nephrectomized. All lesions were macroscopically and microscopically examined. The bioelectrical impedance was evaluated at three different temperatures. Results: Renal injuries were wider and deeper at 90 degrees C (P < 0.001), and they were similar at 80 degrees C and 100 degrees C. The bioelectrical impedance was lower at 90 degrees C than at the temperatures of 80 degrees C and 100 degrees C (P < 0.001). Viable cells in the RF ablation tissue area were not found in the microscopic examination. Conclusion: The most effective cell destruction in terms of width and depth was achieved at 90 degrees C, which was also the optimal temperature for tissue impedance. RF ablation of renal cells eliminated all viable cells.
Resumo:
Background: Transmitted by blood-sucking insects, the unicellular parasite Trypanosoma cruzi is the causative agent of Chagas' disease, a malady manifested in a variety of symptoms from heart disease to digestive and urinary tract dysfunctions. The reasons for such organ preference have been a matter of great interest in the field, particularly because the parasite can invade nearly every cell line and it can be found in most tissues following an infection. Among the molecular factors that contribute to virulence is a large multigene family of proteins known as gp85/trans-sialidase, which participates in cell attachment and invasion. But whether these proteins also contribute to tissue homing had not yet been investigated. Here, a combination of endothelial cell immortalization and phage display techniques has been used to investigate the role of gp85/trans-sialidase in binding to the vasculature. Methods: Bacteriophage expressing an important peptide motif (denominated FLY) common to all gp85/trans-sialidase proteins was used as a surrogate to investigate the interaction of this motif with the endothelium compartment. For that purpose phage particles were incubated with endothelial cells obtained from different organs or injected into mice intravenously and the number of phage particles bound to cells or tissues was determined. Binding of phages to intermediate filament proteins has also been studied. Findings and Conclusions: Our data indicate that FLY interacts with the endothelium in an organ-dependent manner with significantly higher avidity for the heart vasculature. Phage display results also show that FLY interaction with intermediate filament proteins is not limited to cytokeratin 18 (CK18), which may explain the wide variety of cells infected by the parasite. This is the first time that members of the intermediate filaments in general, constituted by a large group of ubiquitously expressed proteins, have been implicated in T. cruzi cell invasion and tissue homing.
Resumo:
Background: Schistosomiasis continues to be a significant public health problem. This disease affects 200 million people worldwide and almost 800 million people are at risk of acquiring the infection. Although vaccine development against this disease has experienced more failures than successes, encouraging results have recently been obtained using membrane-spanning protein antigens from the tegument of Schistosoma mansoni. Our group recently identified Sm29, another antigen that is present at the adult worm tegument surface. In this study, we investigated murine cellular immune responses to recombinant (r) Sm29 and tested this protein as a vaccine candidate. Methods and Findings: We first show that Sm29 is located on the surface of adult worms and lung-stage schistosomula through confocal microscopy. Next, immunization of mice with rSm29 engendered 51%, 60% and 50% reduction in adult worm burdens, in intestinal eggs and in liver granuloma counts, respectively (p<0.05). Protective immunity in mice was associated with high titers of specific anti-Sm29 IgG1 and IgG2a and elevated production of IFN-gamma, TNF-alpha and IL-12, a typical Th1 response. Gene expression analysis of worms recovered from rSm29 vaccinated mice relative to worms from control mice revealed a significant (q<0.01) down-regulation of 495 genes and up-regulation of only 22 genes. Among down-regulated genes, many of them encode surface antigens and proteins associated with immune signals, suggesting that under immune attack schistosomes reduce the expression of critical surface proteins. Conclusion: This study demonstrates that Sm29 surface protein is a new vaccine candidate against schistosomiasis and suggests that Sm29 vaccination associated with other protective critical surface antigens is the next logical strategy for improving protection.
Resumo:
Phytochemical studies carried out with Piperaceae species have shown great diversity of secondary metabolites among which are several displayed considerable biological activities. The species Piper tuberculatum has been intensively investigated and a series of amides have been described. For instance, (E)-piplartine showed significant cytotoxic activity against tumor cell lines, especially human leukemia cell lines; antifungal activity against Cladosporium species; trypanocidal activity and others. Considering the popular use of P. tuberculatum and the lack of pharmacological studies regarding this plant species, the mutagenic and antimutagenic effect of (E)-piplartine was evaluated by the Ames test, using the strains TA97a, TA98, TA100 and TA102 of Salmonella typhimurium. No mutagenic activity was observed for this compound.
Resumo:
Glycosylphosphatidylinositol (GPI) anchoring is a common, relevant posttranslational modification of eukaryotic surface proteins. Here, we developed a fast, simple, and highly sensitive (high attomole-low femtomole range) method that uses liquid chromatography-tandem mass spectrometry (LC-MS(n)) for the first large-scale analysis of GPI-anchored molecules (i.e., the GPIome) of a eukaryote, Trypanosoma cruzi, the etiologic agent of Chagas disease. Our genome-wise prediction analysis revealed that approximately 12% of T. cruzi genes possibly encode GPI-anchored proteins. By analyzing the GPIome of T. cruzi insect-dwelling epimastigote stage using LC-MS(n), we identified 90 GPI species, of which 79 were novel. Moreover, we determined that mucins coded by the T. cruzi small mucin-like gene (TcSMUG S) family are the major GPI-anchored proteins expressed on the epimastigote cell surface. TcSMUG S mucin mature sequences are short (56-85 amino acids) and highly O-glycosylated, and contain few proteolytic sites, therefore, less likely susceptible to proteases of the midgut of the insect vector. We propose that our approach could be used for the high throughput GPIomic analysis of other lower and higher eukaryotes. Molecular Systems Biology 7 April 2009; doi:10.1038/msb.2009.13
Resumo:
Glypican-3 (GPC3) is a proteoglycan involved in proliferation and cell survival. Several reports demonstrated that GPC3 is downregulated in some tumors, such as breast cancer. Previously, we determined that GPC3 reexpression in the murine mammary adenocarcinoma LM3 cells induced an impairment of their invasive and metastatic capacities, associated with a decrease of their motility and an increase of their cell death. We demonstrated that GPC3 inhibits canonical Wnt signaling, as well as it activates non canonical pathway. Now, we identified signaling pathways responsible for the pro-apoptotic role of GPC3 in LM3 cells. We found for the first time that GPC3 inhibits the PI3K/Akt anti-apoptotic pathway while it stimulates the p38MAPK stress-activated one. We report a concomitant modulation of CDK inhibitors as well as of pro- and anti-apoptotic molecules. Our results provide new clues regarding the mechanism involved in the modulation induced by GPC3 of mammary tumor cell growth and survival.
Resumo:
In the plasma kallikrein-kinin system, it has been shown that when plasma prekallikrein (PM) and high molecular weight kininogen (HK) assemble on endothelial cells, plasma kallikrein (huPK) becomes available to cleave HK, releasing bradykinin, a potent mediator of the inflammatory response. Because the formation of soluble glycosaminoglycans occurs concomitantly during the inflammatory processes, the effect of these polysaccharides on the interaction of HK on the cell surface or extracellular matrix (ECM) of two endothelial cell lines (ECV304 and RAEC) was investigated. In the presence of Zn(+2), HK binding to the surface or ECM of RAEC was abolished by heparin; reduced by heparan sulfate, keratan sulfate, chondroitin 4-sulfate or dermatan sulfate; and not affected by chondroitin 6-sulfate. By contrast, only heparin reduced HK binding to the ECV304 cell surface or ECM. Using heparin-correlated molecules such as low molecular weight dextran sulfate, low molecular weight heparin and N-desulfated heparin, we suggest that these effects were mainly dependent on the charge density and on the N-sulfated glucosamine present in heparin. Surprisingly, PM binding to cell- or ECM-bound-HK and PM activation was not modified by heparin. However, the hydrolysis of HK by huPK, releasing BK in the fluid phase, was augmented by this glycosaminoglycan in the presence of Zn(2+). Thus, a functional dichotomy exists in which soluble glycosaminoglycans may possibly either increase or decrease the formation of BK. In conclusion, glycosaminoglycans that accumulated in inflammatory fluids or used as a therapeutic drug (e.g., heparin) could act as pro- or anti-inflammatory mediators depending on different factors within the cell environment. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
The soil bacterium Pseudomonas fluorescens Pf-5 produces two siderophores, a pyoverdine and enantio-pyochelin, and its proteome includes 45 TonB-dependent outer-membrane proteins, which commonly function in uptake of siderophores and other substrates from the environment. The 45 proteins share the conserved beta-barrel and plug domains of TonB-dependent proteins but only 18 of them have an N-terminal signaling domain characteristic of TonB-dependent transducers (TBDTs), which participate in cell-surface signaling systems. Phylogenetic analyses of the 18 TBDTs and 27 TonB-dependent receptors (TBDRs), which lack the N-terminal signaling domain, suggest a complex evolutionary history including horizontal transfer among different microbial lineages. Putative functions were assigned to certain TBDRs and TBDTs in clades including well-characterized orthologs from other Pseudomonas spp. A mutant of Pf-5 with deletions in pyoverdine and enantio-pyochelin biosynthesis genes was constructed and characterized for iron-limited growth and utilization of a spectrum of siderophores. The mutant could utilize as iron sources a large number of pyoverdines with diverse structures as well as ferric citrate, heme, and the siderophores ferrichrome, ferrioxamine B, enterobactin, and aerobactin. The diversity and complexity of the TBDTs and TBDRs with roles in iron uptake clearly indicate the importance of iron in the fitness and survival of Pf-5 in the environment.
Resumo:
This paper describes a new method for the preparation of 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadien-3-one 1 and its derivatives 2-5. This set of synthetic compounds exhibited high antitumoral activities regarding in vitro screening against several human tumor cell lines as lung carcinoma NCI-460, melanoma UACC-62, breast MCF-7, colon HT-29, renal 786-O, ovarian OVCAR-03 and ovarian expressing the resistance phenotype for adriamycin NCI-ADR/ RES, prostate PC-3, and leukemia K-562. Compounds were also tested against murine tumor cell line B16F10 melanoma and lymphocytic leukemia L1210 as well as to their effect toward normal macrophages. Specific activity against colon cancer cells HT-29 was observed for all tested compounds and suggests further studies with models of colon cancer. Compounds 1, 2, and 4 showed significant cytotoxic activity with IC(50) values <= 2.3 mu M for all human cancer cell lines. Intraperitoneal acute administration of compound 1 and 2 showed very low toxicity rate. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This study consists of the bioassay-guided fractionation of the dichloromethane extract from Eudistoma vannamei and the pharmacological characterization of the active fractions. The dried hydromethanolic extract dissolved in aqueous methanol was partitioned with dichloromethane and chromatographed on a silica gel flash column. The anti-proliferative effect was monitored by the MTT assay. Four of the latest fractions, numbered 14 to 17, which held many chemical similarities amongst each other, were found to be the most active. The selected fractions were tested for viability, proliferation and death induction on cultures of HL-60 promycloblastic leukemia cells. The results suggested that the observed cytotoxicity is related to apoptosis induction. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Papulaspora immersa H. H. HOTS ON was isolated from roots and leaves of Smallanthus sonchifolius (POEPP. and ENDL.) H. ROB. (Asteraceae), traditionally known as Yacon. The fungus was cultured in rice, and, from the AcOEt fraction, 14 compounds were isolated. Among them, (22E,24R)-8,14-epoxyergosta-4,22-diene-3,6-dione (4), 2,3-epoxy-1,2,3,4-tetrahydronaphthalene-c-1,c-4,8-triol (10), and the chromone papulasporin (13) were new secondary metabolites. The spectral data of the known natural products were compared with the literature data, and their structures were established as the (24R)stigmast 4 en 3 one (1), 24-methylenecycloartan-3 beta-ol (2), (22E,24R)-ergosta-4,6,8(14),22-tetraen-3-one (3), (-)-(3R,4R)-4-hydroxymellein (5), (-)-(3R)-5-hydroxymellein (6), 6,8-dihydroxy-3-methylisocoumarin (7), (-)-(4S)-4,8-dihydroxy-alpha-tetralone (8), naphthalene-1,8-diol (9), 6,7,8-trihydroxy-3-methylisocoumarin (11), 7-hydroxy-2,5-dimethylchromone (12), and tyrosol (14). Compound 4 showed the highest cytotoxic activity against the human tumor cell lines MDA-MB435 (melanoma), HCT-8 (colon), SF295 (glioblastoma), and HL-60 (promyelocytic leukemia), with IC(50) values of 3.3, 14.7, 5.0 and 1.6 mu m, respectively. Strong synergistic effects were also observed with compound 5 and some of the isolated steroidal compounds.
Resumo:
Galectin-1 (Gal-1) regulates leukocyte turnover by inducing the cell surface exposure of phosphatidylserine (PS), a ligand that targets cells for phagocytic removal, in the absence of apoptosis. Gal-1 monomer- dimer equilibrium appears to modulate Gal-1-induced PS exposure, although the mechanism underlying this regulation remains unclear. Here we show that monomer- dimer equilibrium regulates Gal-1 sensitivity to oxidation. A mutant form of Gal-1, containing C2S and V5D mutations (mGal-1), exhibits impaired dimerization and fails to induce cell surface PS exposure while retaining the ability to recognize carbohydrates and signal Ca(2+) flux in leukocytes. mGal-1 also displayed enhanced sensitivity to oxidation, whereas ligand, which partially protected Gal-1 from oxidation, enhanced Gal-1 dimerization. Continual incubation of leukocytes with Gal-1 resulted in gradual oxidative inactivation with concomitant loss of cell surface PS, whereas rapid oxidation prevented mGal-1 from inducing PS exposure. Stabilization of Gal-1 or mGal-1 with iodoacetamide fully protected Gal-1 and mGal-1 from oxidation. Alkylation-induced stabilization allowed Gal-1 to signal sustained PS exposure in leukocytes and mGal-1 to signal both Ca(2+) flux and PS exposure. Taken together, these results demonstrate that monomer-dimer equilibrium regulates Gal-1 sensitivity to oxidative inactivation and provides a mechanism whereby ligand partially protects Gal-1 from oxidation.
Resumo:
Iron deficiency is a common nutritional disorder, affecting about 30% of the world population. Deficits in iron functional compartments have suppressive effects on the immune system. Environmental problems, age, and other nutrient deficiencies are some of the situations which make human studies difficult and warrant the use of animal models. This study aimed to investigate alterations in the immune system by inducing iron deficiency and promoting recuperation in a mouse model. Hemoglobin concentration, hematocrit, liver iron store, and flow cytometry analyses of cell-surface transferrin receptor (CD71) on peripheral blood and spleen CD4+ and CD8+ T lymphocyte were performed in the control (C) and the iron-deficient (ID) groups of animals at the beginning and end of the experiment. Hematological indices of C and ID mice were not different but the iron stores of ID mice were significantly reduced. Although T cell subsets were not altered, the percentage of T cells expressing CD71 was significantly increased by ID. The results suggest that iron deficiency induced by our experimental model would mimic the early events in the onset of anemia, where thymus atrophy is not enough to influence subset composition of T cells, which can still respond to iron deficiency by upregulating the expression of transferrin receptor.