114 resultados para topological equivalence of attractors
Resumo:
The transport properties of the ""inverted"" semiconductor HgTe-based quantum well, recently shown to be a two-dimensional topological insulator, are studied experimentally in the diffusive regime. Nonlocal transport measurements are performed in the absence of magnetic field, and a large signal due to the edge states is observed. This shows that the edge states can propagate over a long distance, similar to 1 mm, and therefore, there is no difference between local and nonlocal electrical measurements in a topological insulator. In the presence of an in-plane magnetic field a strong decrease of the local resistance and complete suppression of the nonlocal resistance is observed. We attribute this behavior to an in-plane magnetic-field-induced transition from the topological insulator state to a conventional bulk metal state.
Resumo:
The dynamical breaking of gauge symmetry in the supersymmetric quantum electrodynamics in three-dimensional spacetime is studied at two-loop approximation. At this level, the effective superpotential is evaluated in a supersymmetric phase. At one-loop order, we observe a generation of the Chern-Simons term due to a parity violating term present in the classical action. At two-loop order, the scalar background superfield acquires a nonvanishing vacuum expectation value, generating a mass term A(alpha)A(alpha) through the Coleman-Weinberg mechanism. It is observed that the mass of gauge superfield is predominantly an effect of the topological Chern-Simons term.
Resumo:
Chaotic dynamical systems with two or more attractors lying on invariant subspaces may, provided certain mathematical conditions are fulfilled, exhibit intermingled basins of attraction: Each basin is riddled with holes belonging to basins of the other attractors. In order to investigate the occurrence of such phenomenon in dynamical systems of ecological interest (two-species competition with extinction) we have characterized quantitatively the intermingled basins using periodic-orbit theory and scaling laws. The latter results agree with a theoretical prediction from a stochastic model, and also with an exact result for the scaling exponent we derived for the specific class of models investigated. We discuss the consequences of the scaling laws in terms of the predictability of a final state (extinction of either species) in an ecological experiment.
Resumo:
We present a derivation of the Redfield formalism for treating the dissipative dynamics of a time-dependent quantum system coupled to a classical environment. We compare such a formalism with the master equation approach where the environments are treated quantum mechanically. Focusing on a time-dependent spin-1/2 system we demonstrate the equivalence between both approaches by showing that they lead to the same Bloch equations and, as a consequence, to the same characteristic times T(1) and T(2) (associated with the longitudinal and transverse relaxations, respectively). These characteristic times are shown to be related to the operator-sum representation and the equivalent phenomenological-operator approach. Finally, we present a protocol to circumvent the decoherence processes due to the loss of energy (and thus, associated with T(1)). To this end, we simply associate the time dependence of the quantum system to an easily achieved modulated frequency. A possible implementation of the protocol is also proposed in the context of nuclear magnetic resonance.
Resumo:
Large-scale cortical networks exhibit characteristic topological properties that shape communication between brain regions and global cortical dynamics. Analysis of complex networks allows the description of connectedness, distance, clustering, and centrality that reveal different aspects of how the network's nodes communicate. Here, we focus on a novel analysis of complex walks in a series of mammalian cortical networks that model potential dynamics of information flow between individual brain regions. We introduce two new measures called absorption and driftness. Absorption is the average length of random walks between any two nodes, and takes into account all paths that may diffuse activity throughout the network. Driftness is the ratio between absorption and the corresponding shortest path length. For a given node of the network, we also define four related measurements, namely in-and out-absorption as well as in-and out-driftness, as the averages of the corresponding measures from all nodes to that node, and from that node to all nodes, respectively. We find that the cat thalamo-cortical system incorporates features of two classic network topologies, Erdos-Renyi graphs with respect to in-absorption and in-driftness, and configuration models with respect to out-absorption and out-driftness. Moreover, taken together these four measures separate the network nodes based on broad functional roles (visual, auditory, somatomotor, and frontolimbic).
Resumo:
Biological neuronal networks constitute a special class of dynamical systems, as they are formed by individual geometrical components, namely the neurons. In the existing literature, relatively little attention has been given to the influence of neuron shape on the overall connectivity and dynamics of the emerging networks. The current work addresses this issue by considering simplified neuronal shapes consisting of circular regions (soma/axons) with spokes (dendrites). Networks are grown by placing these patterns randomly in the two-dimensional (2D) plane and establishing connections whenever a piece of dendrite falls inside an axon. Several topological and dynamical properties of the resulting graph are measured, including the degree distribution, clustering coefficients, symmetry of connections, size of the largest connected component, as well as three hierarchical measurements of the local topology. By varying the number of processes of the individual basic patterns, we can quantify relationships between the individual neuronal shape and the topological and dynamical features of the networks. Integrate-and-fire dynamics on these networks is also investigated with respect to transient activation from a source node, indicating that long-range connections play an important role in the propagation of avalanches.
Resumo:
The problem of semialgebraic Lipschitz classification of quasihomogeneous polynomials on a Holder triangle is studied. For this problem, the ""moduli"" are described completely in certain combinatorial terms.
Resumo:
This paper concerns the spaces of compact operators kappa(E,F), where E and F are Banach spaces C([1, xi], X) of all continuous X-valued functions defined on the interval of ordinals [1, xi] and equipped with the supremun norm. We provide sufficient conditions on X, Y, alpha, beta, xi and eta, with omega <= alpha <= beta < omega 1 for the following equivalence: (a) kappa(C([1, xi], X), C([1, alpha], Y)) is isomorphic to kappa(C([1,eta], X), C([1, beta], Y)), (b) beta < alpha(omega). In this way, we unify and extend results due to Bessaga and Pelczynski (1960) and C. Samuel (2009). Our result covers the case of the classical spaces X = l(p) and Y = l(q) with 1 < p, q < infinity.
Resumo:
Let A be a unital ring which is a product of possibly infinitely many indecomposable rings. We establish a criteria for the existence of a globalization for a given twisted partial action of a group on A. If the globalization exists, it is unique up to a certain equivalence relation and, moreover, the crossed product corresponding to the twisted partial action is Morita equivalent to that corresponding to its globalization. For arbitrary unital rings the globalization problem is reduced to an extendibility property of the multipliers involved in the twisted partial action.
Resumo:
We study polar actions with horizontal sections on the total space of certain principal bundles G/K -> G/H with base a symmetric space of compact type. We classify such actions up to orbit equivalence in many cases. In particular, we exhibit examples of hyperpolar actions with cohomogeneity greater than one on locally irreducible homogeneous spaces with nonnegative curvature which are not homeomorphic to symmetric spaces.
Resumo:
The skewness sk(G) of a graph G = (V, E) is the smallest integer sk(G) >= 0 such that a planar graph can be obtained from G by the removal of sk(C) edges. The splitting number sp(G) of C is the smallest integer sp(G) >= 0 such that a planar graph can be obtained from G by sp(G) vertex splitting operations. The vertex deletion vd(G) of G is the smallest integer vd(G) >= 0 such that a planar graph can be obtained from G by the removal of vd(G) vertices. Regular toroidal meshes are popular topologies for the connection networks of SIMD parallel machines. The best known of these meshes is the rectangular toroidal mesh C(m) x C(n) for which is known the skewness, the splitting number and the vertex deletion. In this work we consider two related families: a triangulation Tc(m) x c(n) of C(m) x C(n) in the torus, and an hexagonal mesh Hc(m) x c(n), the dual of Tc(m) x c(n) in the torus. It is established that sp(Tc(m) x c(n)) = vd(Tc(m) x c(n) = sk(Hc(m) x c(n)) = sp(Hc(m) x c(n)) = vd(Hc(m) x c(n)) = min{m, n} and that sk(Tc(m) x c(n)) = 2 min {m, n}.
Resumo:
Hot tensile and creep tests were carried out on Kanthal A1 alloy in the temperature range from 600 to 800 degrees C. Each of these sets of data were analyzed separately according to their own methodologies, but an attempt was made to find a correlation between them. A new criterion proposed for converting hot tensile data to creep data, makes possible the analysis of the two kinds of results according to usual creep relations like: Norton, Monkman-Grant, Larson-Miller and others. The remarkable compatibility verified between both sets of data by this procedure strongly suggests that hot tensile data can be converted to creep data and vice-versa for Kanthal A1 alloy, as verified previously for other metallic materials.
Resumo:
Background: The Burns Specific Health Scale-Revised (BSHS-R) is of easy application, can be self-administered, and it is considered a good scale to evaluate various important life aspects of burn victims. Objectives: To translate and culturally adapt the BSHS-R into the Brazilian-Portuguese language and to evaluate the internal consistency and convergent validity of the translated BSHS-R. Methods: The cultural adaptation of the BSHS-R included translation and back-translation, discussions with professionals and patients to ensure conceptual equivalence, semantic evaluation, and pre-test of the instrument. The Final Brazilian-Portuguese Version (FBPV) of the BSHS-R was tested on a group of 115 burn patients for internal consistency and validity of construct (using the Rosenberg Self-Esteem Scale (RSES) and the Beck Depression Inventory (BDI)). Results: All values of Cronbach`s alpha were greater than. 8, demonstrating that the internal consistency of the FBPV was very high. Self-esteem was highly correlated with affect and body image (r = .59, p < .001), and with interpersonal relationships (T = .51, p < .001). Correlations between the domains of the FBPV and the BDI were all negative but larger in magnitude than the correlations with RSES. Depression was highly correlated with affect and body image (r = -77, p < .001), and with interpersonal relationships (r = -67, p < .001). Conclusions: The results showed that the adapted version of the BSHS-R into Brazilian-Portuguese fulfills the validity and reliability criteria required from an instrument of health status assessment for burn patients. (C) 2008 Elsevier Ltd and ISBI. All rights reserved.
Resumo:
A quantitative correlation between the glass forming ability and the electronic parameters of metallic alloys is presented. It is found that the critical cooling rate for glass formation (R(c)) correlates well with the average work function difference (Delta phi) and the average electron density difference (Delta n(ws)(1/3)) among the constituent elements of the investigated alloys. A correlation coefficient (R(2)) of 0.77 was found for 68 alloys in 30 metallic systems, which is better than the previous proposed correlation between the glass forming ability and the average Pauling electronegativity difference.
Resumo:
This work evaluates the glass formation of selected alloys based on the Ti-Zr-Fe-Co system, assuming the synergy of two distinct criteria: minimum topological instability and average electronegativity plots. Combining the minimum topological instability and the average electronegativity values result in a plot in which the most probable good glass former compositions are identified Ti-Zr rich alloys with Fe and Co additions were produced, compared against the final plot, and the best glass forming alloy composition was found to be very close the theoretically predicted ones on the Ti-Zr rich side, for both Ti-Zr-Fe and Ti-Zr-Co systems. (C) 2009 Elsevier B V All rights reserved