50 resultados para thermo-solvatochromism
Resumo:
Solvatochromic and ionochromic effects of the iron(II)bis(1,10-phenanthroline)dicyano (Fe(phen)(2)(CN)(2)) complex were investigated by means of combined DFT/TDDFT calculations using the PBE and B3LYP functionals. Extended solvation models of Fe(phen)(2)(CN)(2) in acetonitrile and aqueous solution, as well as including interaction with Mg(2+), were constructed. The calculated vertical excitation energies reproduce well the observed solvatochromism in acetonitrile and aqueous solutions, the ionochromism in acetonitrile in the presence of Mg(2+), and the absence of ionochromic effect in aqueous solution. The vertical excitation energies and the nature of the transitions were reliably predicted after inclusion of geometry relaxation upon aqueous micro- and global solvation and solvent polarization effect in the TDDFT calculations. The two intense UV-vis absorption bands occurring for all systems studied are interpreted as transitions from a hybrid Fe(II)(d)/cyano N(p) orbital to a phenanthroline pi* orbital rather than a pure metal-to-ligand-charge transfer (MLCT). The solvatochromic and ionochromic blue band shifts of Fe(phen)(2)(CN)(2) were explained with preferential stabilization of the highest occupied Fe(II)(d)/cyano N(p) orbitals as a result of specific interactions with water solvent molecules or Mg(2+) ions in solution. Such interactions occur through the CN(-) groups in the complex, and they have a decisive role for the observed blue shifts of UV-vis absorption bands.
Resumo:
The substitution of petroleum-based fuels with those from renewable sources has gained momentum worldwide. A UV-vis experiment for the quantitative analysis of biofuels (bioethanol or biodiesel) in (petroleum-based) diesel oil has been developed. Before the experiment, students were given a quiz on biofuels, and then they were asked to suggest a suitable UV-vis experiment for the quantification of biofuels in diesel oil. After discussing the results of the quiz, the experiment was conducted. This included the determination of lambda(max) of the medium-dependent, that is, solvatochromic, visible absorption band of the probe 2,6-bis[4-(tert-butyl)phenyl]-4-{2,4,6-tris[4-(tert-butyl)phenyl]pyridinium-1-yl}phenolate as a function of fuel composition. The students appreciated that the subject was linked to a daily situation and that they were asked to suggest the experiment. This experiment served to introduce the phenomena of solvation and solvatochromism.
Resumo:
Co-solvents can minimize two of the major problems associated with the use of ionic liquids (ILs) as solvents for homogeneous derivatization of cellulose: high viscosity and limited miscibility with non-polar reagents or reaction products. Thus, the effects of 18 solvents and 3 binary solvent mixtures on cellulose solutions in three ILs were systematically studied with respect to the solution phase behavior. The applicable limits of these mixtures were evaluated and general guidelines for the use of co-solvents in cellulose chemistry could be advanced: Appropriate co-solvents should have EN T values (normalized empirical polarity) > 0.3, very low ``acidity`` (alpha < 0.5), and relatively high ""basicity`` (beta >= 0.4). Moreover, novel promising co-solvents and binary co-solvent mixtures were identified.
Resumo:
The second-order rate constants of thiolysis by n-heptanethiol on 4-nitro-N-n-butyl-1,8-naphthalimide (4NBN) are strongly affected by the water-methanol binary mixture composition reaching its maximum at around 50% mole fraction. In parallel solvent effects on 4NBN absorption molar extinction coefficient also shows a maximum at this composition region. From the spectroscopic study of reactant and product and the known H-bond capacity of the mixture a rationalization that involves specific solvent H-donor interaction with the nitro group is proposed to explain the kinetic data. Present findings also show a convenient methodology to obtain strongly fluorescent imides, valuable for peptide and analogs labeling as well as for thio-naphthalimide derivatives preparations. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Background. Mesothelial injury is the pivot in the development of adhesions. An increase in the proliferation of mesothelial cells was verified by in vitro studies with the use of keratinocyte growth factor (KGF). This study investigated the influence of KGF associated with thermo-sterilized carboxymethyl chitosan (NOCCts) in the reduction of pericardial adhesions. Methods. An induction model of pericardial adhesion was carried out in 24 pigs. Animals were randomly allocated to receive topical application of KGF, KGF + NOCCts, NOCCts, or saline (control). At 8 weeks, intra-pericardial adhesions were evaluated and a severity score was established. The time spent to dissect the adhesions and the amount of sharp dissection used, were recorded. Histologic sections were stained with sirius red for a morphometric evaluation using a computer-assisted image analysis system. Cytokeratin AE1/AE3 immunostaining were employed to identify mesothelial cells. Results. The severity score expressed in median (minimum to maximum), in relation to the control group (17 [15 to 18]), was lower in the KGF + NOCCts group (7 [6 to 9], p < 0.01) followed by the KGF group (11.5 [9 to 12], 0.01 < p < 0.05) and the NOCCts group (12 [9 to 14], p > 0.05). The dissection time was significantly lower in the KGF + NOCCts group (7.1 +/- 0.6 vs 33.9 +/- 9.2 minutes, p < 0.001). A significantly less sharp dissection was also required in the KGF + NOCCts group. In the adhesion segment, a decreased collagen proportion was found in the KGF + NOCCts group (p < 0.05). Mesothelial cells were present more extensively in groups in which KGF was delivered (p = 0.01). Conclusions. The use of KGF associated with NOCCts resulted in a synergic action that decreases postoperative pericardial adhesions in a highly significant way. (Ann Thorac Surg 2010; 90: 566-72) (C) 2010 by The Society of Thoracic Surgeons