92 resultados para self paced reading task
Resumo:
The technology of self-reducing pellets for ferro-alloys production is becoming an emerging process due to the lower electric energy consumption and the improvement of metal recovery in comparison with the traditional process. This paper presents the effects of reduction temperature, addition of ferro-silicon and addition of slag forming agents for the production of high carbon ferro-chromium by utilization of self-reducing pellets. These pellets were composed of Brazilian chromium ore (chromite) concentrate, petroleum coke, Portland cement, ferro-silicon and slag forming components (silica and hydrated lime). The pellets were processed at 1 773 K, 1 823 K and 1 873 K using an induction furnace. The products obtained, containing slag and metallic phases, were analyzed by scanning electron microscopy and chemical analyses (XEDS). A large effect on the reduction time was observed by increasing the temperature from 1 773 K to 1 823 K for pellets without Fe-Si addition: around 4 times faster at 1 823 K than at 1 773 K for reaction fraction close to one. However, when the temperature was further increased from 1 823 K to 1 873 K the kinetics improved by double. At 1 773 K, the addition of 2% of ferro-silicon in the pellet resulted in an increasing reaction rate of around 6 times, in comparison with agglomerate without it. The addition of fluxing agents (silica and lime), which form initial slag before the reduction is completed, impaired the full reduction. These pellets became less porous after the reduction process.
Resumo:
Polymer-clay nanocomposites are materials with many interesting structures, properties, and potential applications. Microstructural evaluation of a nanocomposite is not an easy task, as clay may form hierarchical structures which may look different when observed at various magnifications under a microscope, and also as the concepts of ""intercalation"" and ""exfoliation"" are not self-sufficient to describe its morphology. In this work polymer-clay nanocomposites of polystyrene and two styrene-containing block copolymers (styrene-butadiene-styrene and styrene-ethylene/butylene-styrene) were prepared using three different techniques. Clay dispersion was evaluated by a recently developed microscopy image analysis procedure, combining the analysis of optical and transmission electron micrographs, and the characterization was complemented by X-ray diffraction and rheological measurements. The results showed better clay dispersion for both block copolymers nanocomposites, mainly due to their molecular architectures. Moreover, the techniques which showed the best results involved mixing the materials in a solvent medium. POLYM. ENG. SCI., 50:257-267, 2010. (C) 2009 Society of Plastics Engineers
Resumo:
This paper discusses the effects of temperature, addition of ferro-silicon and fluxing agents for the production of high carbon ferro-chromium by self-reducing process. The use of self-reducing agglomerates for ferro-alloys production is becoming an emerging processing technology due to lowering the electric energy consumption and improving the metal recovery in comparison with traditional ones. The self-reducing pellets were composed by chromite, petroleum coke, cement and small (0.1% - 2%) addition of ferro-silicon. The slag composition was adjusted by addition of fluxing agents. The reduction of pellets was carried out at 1773K (1500 degrees C), 1823K (1550 degrees C) and 1873K (1600 degrees C) by using induction furnace. The products obtained, containing slag and metallic phases, were analyzed by scanning electron microscopy and chemical analyses (XEDS). By increasing temperature from 1773K to 1823K large effect on the reduction time was observed. It decreased from 30 minutes to 10 minutes, for reaching around 0.98 reduction fraction. No significant effect on reduction time was observed when the reduction temperature was increased from 1823K to 1873K. At 1773K, the addition of 2% of ferro-silicon in the pellet resulted in an increasing reaction rate of around 6 times, in comparison with agglomerate without this addition. The addition of fluxing agents (silica and hydrated lime) has effect on reduction time (inverse relationship) and the pellets become less porous after reduction.
Resumo:
The Cluster Variation Method (CVM), introduced over 50 years ago by Prof. Dr. Ryoichi Kikuchi, is applied to the thermodynamic modeling of the BCC Cr-Fe system in the irregular tetrahedron approximation, using experimental thermochemical data as initial input for accessing the model parameters. The results are checked against independent data on the low-temperature miscibility gap, using increasingly accurate thermodynamic models, first by the inclusion of the magnetic degrees of freedom of iron and then also by the inclusion of the magnetic degrees of freedom of chromium. It is shown that a reasonably accurate description of the phase diagram at the iron-rich side (i.e. the miscibility gap borders and the Curie line) is obtained, but only at expense of the agreement with the above mentioned thermochemical data. Reasons for these inconsistencies are discussed, especially with regard to the need of introducing vibrational degrees of freedom in the CVM model. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this work we explore the noise characteristics in lithographically-defined two terminal devices containing self-assembled InAs/InP quantum dots. The experimental ensemble of InAs dots show random telegraph noise (RTN) with tuneable relative amplitude-up to 150%-in well defined temperature and source-drain applied voltage ranges. Our numerical simulation indicates that the RTN signature correlates with a very low number of quantum dots acting as effective charge storage centres in the structure for a given applied voltage. The modulation in relative amplitude variation can thus be associated to the altered electrostatic potential profile around such centres and enhanced carrier scattering provided by a charged dot.
Resumo:
The behavior of normal individuals and psychiatric patients vary in a similar way following power laws. The presence of identical patterns of behavioral variation occurring in individuals with different levels of activity is suggestive of self-similarity phenomena. Based on these findings, we propose that the human behavior in social context can constitute a system exhibiting self-organized criticality (SOC). The introduction of SOC concept in psychological theories can help to approach the question of behavior predictability by taking into consideration their intrinsic stochastic character. Also, the ceteris paribus generalizations characteristic of psychological laws can be seen as a consequence of individual level description of a more complex collective phenomena. Although limited, this study suggests that, if an adequate level of description is adopted, the complexity of human behavior can be more easily approached and their individual and social components can be more realistically modeled. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Due to the several kinds of services that use the Internet and data networks infra-structures, the present networks are characterized by the diversity of types of traffic that have statistical properties as complex temporal correlation and non-gaussian distribution. The networks complex temporal correlation may be characterized by the Short Range Dependence (SRD) and the Long Range Dependence - (LRD). Models as the fGN (Fractional Gaussian Noise) may capture the LRD but not the SRD. This work presents two methods for traffic generation that synthesize approximate realizations of the self-similar fGN with SRD random process. The first one employs the IDWT (Inverse Discrete Wavelet Transform) and the second the IDWPT (Inverse Discrete Wavelet Packet Transform). It has been developed the variance map concept that allows to associate the LRD and SRD behaviors directly to the wavelet transform coefficients. The developed methods are extremely flexible and allow the generation of Gaussian time series with complex statistical behaviors.
Resumo:
This work investigates the formation of self-assembled monolayers (SAMs) of cystamine and cystamine-glutaraldehyde on a screen-printed electrode, and the immobilization of the Tc85 protein (from Trypanosoma cruzi) on these monolayers. The methods used included infrared techniques, cyclic voltammetry, and electrochemical impedance spectroscopy. The electrochemical studies were performed at pH 6.9 in 0.1 mol L(-1) phosphate buffer solution containing Fe(CN)(6)(-3/-4) redox species. The surface coverage (0) of the electrode was 0.10 (cystamine), 0.35 (cystamine-glutaraldehyde) and 0.84 (Tc85). Interpretation of electrochemical impedance spectroscopy results was based on a charge-transfer reaction involving Fe(CN)(6)(-3/-4) species at high frequencies, followed by a diffusion through the monolayers at lower frequencies. Estimates of the electrode surface coverage, active site radius, and distance between two adjacent sites assumed that charge transfer occurred at the active sites, and that there was a planar diffusion of redox species to these sites. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We define a new type of self-similarity for one-parameter families of stochastic processes, which applies to certain important families of processes that are not self-similar in the conventional sense. This includes Hougaard Levy processes such as the Poisson processes, Brownian motions with drift and the inverse Gaussian processes, and some new fractional Hougaard motions defined as moving averages of Hougaard Levy process. Such families have many properties in common with ordinary self-similar processes, including the form of their covariance functions, and the fact that they appear as limits in a Lamperti-type limit theorem for families of stochastic processes.
Resumo:
When wandering around a city such as Sao Paulo, we are surrounded by letters, numbers and symbols. These elements form part of an environment full of signs in many shapes and sizes that compete for our attention. Our perception of these elements contributes towards our spatial guidance and sense of place. The idea of `reading` the city, or urban environment, was introduced by Kevin Lynch, for whom reading the urban structure follows on from recognizing or identifying its numerous visual elements, not necessarily verbal ones. Beginning with a brief bibliographic review of perception theories, this article combines concepts from environmental psychology with concerns brought up by the fields of information design and epigraphy studies, setting out the basis of a methodological proposal for the study of typography and lettering in the urban environment.
Resumo:
A chemotaxonomic analysis is described of a database containing various types of compounds from the Heliantheae tribe (Asteraceae) using Self-Organizing Maps (SOM). The numbers of occurrences of 9 chemical classes in different taxa of the tribe were used as variables. The study shows that SOM applied to chemical data can contribute to differentiate genera, subtribes, and groups of subtribes (subtribe branches), as well as to tribal and subtribal classifications of Heliantheae, exhibiting a high hit percentage comparable to that of an expert performance, and in agreement with the previous tribe classification proposed by Stuessy.
Resumo:
Members of social insect colonies employ a large variety of chemical signals during their life. Of these, cuticular hydrocarbons are of primary importance for social insects since they allow for the recognition of conspecifics, nestmates and even members of different castes. The objectives of this study were (1) to characterize the variation of the chemical profiles among workers of the stingless bee Melipona marginata, and (2) to investigate the dependence of the chemical profiles on the age and on the behavior of the studied individuals. The results showed that cuticular hydrocarbon profiles of workers were composed of alkanes, alkenes and alkadienes that varied quantitatively and qualitatively according to function of workers in the colony. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This naphthalene diimide derivative, DC18, forms highly conjugated semiconducting stacked assemblies over electrodes after electrochemical conditioning. These molecular materials are very efficient towards electrochemical photoreduction of oxygen under visible light.
Resumo:
WO(3)/chitosan and WO(3)/chitosan/poly(ethylene oxide) (PEO) films were prepared by the layer-by-layer method. The presence of chitosan enabled PEO to be carried into the self-assembled structure, contributing to an increase in the Li(+) diffusion rate. On the basis of the galvanostatic intermittent titration technique (GITT) and the quadratic logistic equation (QLE), a spectroelectrochemical method was used for determination of the ""optical"" diffusion coefficient (D(op)), enabling analysis of the Li(+) diffusion rate and, consequently, the coloration front rate in these host matrices. The D(op) values within the WO(3)/chitosan/PEO film were significantly higher than those within the WO(3)/chitosan film, mainly for higher values of injected charge. The presence of PEO also ensured larger accessibility to the electroactive sites, in accordance with the method employed here. Hence, this spectroelectrochemical method allowed us to separate the contribution of the diffusion process from the number of accessible electroactive sites in the materials, thereby aiding a better understanding of the useful electrochemical and electrochromic properties of these films for use in electrochromic devices. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Layer-by-layer (LbL) nanocomposite films from TiO(2) nanoparticles and tungsten-based oxides (WO(x)H(y)), as well as dip-coating films of TiO(2) nano particles, were prepared and investigated by electrochemical techniques under visible light beams, aiming to evaluate the lithium ion storage and chromogenic properties. Atomic force microscopy (AFM) images were obtained for morphological characterization of the Surface of the materials, which have similar roughness. Cyclic voltammetry and chronoamperometry measurements indicated high storage capacity of lithium ions in the LbL nanocomposite compared with the dip-coating film, which was attributed to the faster lithium ion diffusion rate within the self-assembled matrix. On the basis of the data obtained from galvanostatic intermittent titration technique (GITT), the values of lithium ion diffusion coefficient (D(Li)) for TiO(2)/WO(x)H(y) were larger compared with those for TiO(2). The rate of the coloration front in the matrices was investigated using a spectroelectrochemical method based oil GITT, allowing the determination of the ""optical"" diffusion coefficient (D(op)) as a function of the amount of lithium ions previously inserted into the matrices. The Values of D(Li) and D(op) suggested the existence of phases with distinct contribution to lithium ion diffusion rates and electrochromic efficiency. Moreover, these results aided a better understanding of the temporal change of current density and absorbance during the ionic electro-insertion, which is important for the possible application of these materials in lithium ion batteries and electrohromic devices.