141 resultados para selection methods
Resumo:
Background: High-throughput molecular approaches for gene expression profiling, such as Serial Analysis of Gene Expression (SAGE), Massively Parallel Signature Sequencing (MPSS) or Sequencing-by-Synthesis (SBS) represent powerful techniques that provide global transcription profiles of different cell types through sequencing of short fragments of transcripts, denominated sequence tags. These techniques have improved our understanding about the relationships between these expression profiles and cellular phenotypes. Despite this, more reliable datasets are still necessary. In this work, we present a web-based tool named S3T: Score System for Sequence Tags, to index sequenced tags in accordance with their reliability. This is made through a series of evaluations based on a defined rule set. S3T allows the identification/selection of tags, considered more reliable for further gene expression analysis. Results: This methodology was applied to a public SAGE dataset. In order to compare data before and after filtering, a hierarchical clustering analysis was performed in samples from the same type of tissue, in distinct biological conditions, using these two datasets. Our results provide evidences suggesting that it is possible to find more congruous clusters after using S3T scoring system. Conclusion: These results substantiate the proposed application to generate more reliable data. This is a significant contribution for determination of global gene expression profiles. The library analysis with S3T is freely available at http://gdm.fmrp.usp.br/s3t/.S3T source code and datasets can also be downloaded from the aforementioned website.
Resumo:
Objective: To reevaluate the responses of thyrotropin-releasing hormone ( TRH) stimulation test in baseline condition as well as after the administration of graded supraphysiological doses of liothyronine ( L- T-3) in normal subjects. Design: To assess various parameters related to the hypothalamic-pituitary axis and peripheral tissue responses to L- T-3 in 22 normal individuals ( median age: 30.5 years). Subjects were submitted to an intravenous TRH test at baseline condition and also to the oral administration of sequential and graded doses of L- T-3 ( 50, 100, and 200 mu g/day), each given over 3 days, at an outpatient clinic. Blood samples were obtained for thyrotropin (TSH) and prolactin (PRL) at basal and then 15, 30, and 60 minutes after the TRH injection. Effects of L- T3 administration on cholesterol, creatine kinase, retinol, ferritin, and sex hormone-binding globulin ( SHBG) were also measured at basal and after the oral administration of L- T-3. Main outcome: TRH administration resulted in an increase of 4-to 14-fold rise in serum TSH ( 8.3 +/- 2.5-fold), and in a slight rise in serum PRL concentrations ( 3.8 +/- 1.5-fold). Administration of graded doses of triiodothyronine ( T-3) resulted in a dose-dependent suppression of TSH and PRL. Basal thyroxine- binding globulin (TBG) and cholesterol levels decreased, and ferritin and SHBG increased after L- T-3 administration, while creatine kinase and retinol did not change throughout the study. There was a positive correlation between basal TSH and TSH peak response to TRH at basal condition and after each sequential L- T-3 doses. On the other hand, TSH peak response to the TRH test did not predict cholesterol, TBG, ferritin, or SHBG values. Conclusion: Using the current methods on hormone and biochemical analysis, we standardized the response of many parameters to TRH stimulation test after sequential and graded T-3 suppression test in normal subjects. Our data suggest that the evaluation of the responses of the hypothalamus-pituitary axis to TRH test as well as the impact of L- T-3 on peripheral tissues were not modified by the current methods.
Resumo:
Esophageal ulcer (EU) represents an important comorbidity in AIDS. We evaluated the prevalence of EU, the accuracy of the endoscopic and histologic methods used to investigate viral EU in HIV-positive Brazilian patients and the numerical relevance of tissue sampling. A total of 399 HIV-positive patients underwent upper gastrointestinal (UGI) endoscopy. HIV-positive patients with EU determined by UGI endoscopy followed by biopsies were analyzed by the hematoxylin-eosin (HE) and immunohistochemical (IH) methods. EU was detected in 41 patients (mean age, 39.2 years; 23 males), with a prevalence of 10.27%. The median CD4 count was 49 cells/mm(3) (range, 1-361 cells/mm(3)) and the viral load was 58,869 copies per milliliter (range, 50-77,3290 copies per milliliter). UGI endoscopy detected 29 of 41 EU suggestive of cytomegalovirus (CMV) infection and 7 of 41 indicating herpes simplex virus (HSV) infection. HE histology confirmed 4 of 29 ulcers induced by CMV, 2 of 7 induced by HSV, and 1 of 7 induced by HSV plus CMV. IH for CMV and HSV confirmed the HE findings and detected one additional CMV-induced case. UGI endoscopy showed 100% sensitivity and 15% specificity for the diagnosis of EU due to CMV or HSV compared to HE and IH. HE proved to be an adequate method for etiologic evaluation, with 87% sensitivity and 100% specificity compared to IH. The number of samples did not influence the etiologic evaluation. The data support the importance of IH as a complementary method for HE in the diagnosis of EU of viral etiology.
Resumo:
Background: Considering the broad variation in the expression of housekeeping genes among tissues and experimental situations, studies using quantitative RT-PCR require strict definition of adequate endogenous controls. For glioblastoma, the most common type of tumor in the central nervous system, there was no previous report regarding this issue. Results: Here we show that amongst seven frequently used housekeeping genes TBP and HPRT1 are adequate references for glioblastoma gene expression analysis. Evaluation of the expression levels of 12 target genes utilizing different endogenous controls revealed that the normalization method applied might introduce errors in the estimation of relative quantities. Genes presenting expression levels which do not significantly differ between tumor and normal tissues can be considered either increased or decreased if unsuitable reference genes are applied. Most importantly, genes showing significant differences in expression levels between tumor and normal tissues can be missed. We also demonstrated that the Holliday Junction Recognizing Protein, a novel DNA repair protein over expressed in lung cancer, is extremely over-expressed in glioblastoma, with a median change of about 134 fold. Conclusion: Altogether, our data show the relevance of previous validation of candidate control genes for each experimental model and indicate TBP plus HPRT1 as suitable references for studies on glioblastoma gene expression.
Resumo:
Aims. We create a catalogue of simulated fossil groups and study their properties, in particular the merging histories of their first-ranked galaxies. We compare the simulated fossil group properties with those of both simulated non-fossil and observed fossil groups. Methods. Using simulations and a mock galaxy catalogue, we searched for massive (>5 x 10(13) h(-1) M-circle dot) fossil groups in the Millennium Simulation Galaxy Catalogue. In addition, we attempted to identify observed fossil groups in the Sloan Digital Sky Survey Data Release 6 using identical selection criteria. Results. Our predictions on the basis of the simulation data are: (a) fossil groups comprise about 5.5% of the total population of groups/clusters with masses larger than 5 x 10(13) h(-1) M-circle dot. This fraction is consistent with the fraction of fossil groups identified in the SDSS, after all observational biases have been taken into account; (b) about 88% of the dominant central objects in fossil groups are elliptical galaxies that have a median R-band absolute magnitude of similar to-23.5-5 log h, which is typical of the observed fossil groups known in the literature; (c) first-ranked galaxies of systems with M > 5 x 10(13) h(-1) M-circle dot, regardless of whether they are either fossil or non-fossil, are mainly formed by gas-poor mergers; (d) although fossil groups, in general, assembled most of their virial masses at higher redshifts in comparison with non-fossil groups, first-ranked galaxies in fossil groups merged later, i.e. at lower redshifts, compared with their non-fossil-group counterparts. Conclusions. We therefore expect to observe a number of luminous galaxies in the centres of fossil groups that show signs of a recent major merger.
Resumo:
A variety of factors influence prey selection by predators. Because Barn Owls (Tyto alba) and Burrowing Owls (Athene cunicularia) differ in size and foraging tactics, we expected differential predation on small mammal prey. We hypothesized that the Barn Owl, all active predator, would prey on smaller and younger individuals than the Burrowing Owl, a sit-and-wait predator. We used pellet analyses to evaluate selection of small mammals by the two owls in relation to prey), species, age, and size at the Ecological Station of Itirapina, state of Sao Paulo, in southeastern Brazil. Small mammals constituted most of the prey individuals and biomass in the diet of Barn Owls. Although Burrowing Owls consumed a wider range of taxa, small mammals represented one-third of all biomass consumed. With respect. to small mammals, Barn Owls foraged selectively relative to prey species, size, and age. Burrowing Owls foraged opportunistically relative to prey species, but selectively relative to prey size and age. Barn Owls selected smaller and younger (juvenile and subadult) individuals of the delicate vesper mouse (Calomys tener) and Burrowing Owls preyed more oil larger and older (subadult only) individuals. morphology and behavior of both prey and predators may explain this differential predation. Our data suggest that the active predator feeds oil smaller and younger prey, and the sit-and-wait predator took relatively larger and older prey.
Resumo:
Background: The malaria parasite Plasmodium falciparum exhibits abundant genetic diversity, and this diversity is key to its success as a pathogen. Previous efforts to study genetic diversity in P. falciparum have begun to elucidate the demographic history of the species, as well as patterns of population structure and patterns of linkage disequilibrium within its genome. Such studies will be greatly enhanced by new genomic tools and recent large-scale efforts to map genomic variation. To that end, we have developed a high throughput single nucleotide polymorphism (SNP) genotyping platform for P. falciparum. Results: Using an Affymetrix 3,000 SNP assay array, we found roughly half the assays (1,638) yielded high quality, 100% accurate genotyping calls for both major and minor SNP alleles. Genotype data from 76 global isolates confirm significant genetic differentiation among continental populations and varying levels of SNP diversity and linkage disequilibrium according to geographic location and local epidemiological factors. We further discovered that nonsynonymous and silent (synonymous or noncoding) SNPs differ with respect to within-population diversity, interpopulation differentiation, and the degree to which allele frequencies are correlated between populations. Conclusions: The distinct population profile of nonsynonymous variants indicates that natural selection has a significant influence on genomic diversity in P. falciparum, and that many of these changes may reflect functional variants deserving of follow-up study. Our analysis demonstrates the potential for new high-throughput genotyping technologies to enhance studies of population structure, natural selection, and ultimately enable genome-wide association studies in P. falciparum to find genes underlying key phenotypic traits.
Resumo:
Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D(p)) ranging from 0.03 to 0.10 mu m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC(a), and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC(e)) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D(p) < 2.5 mu m: average 59.8 mu g m(-3)) were higher than coarse aerosols (D(p) > 2.5 mu m: 4.1 mu g m(-3)). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC(e), comprised more than 90% to the total aerosol mass. Concentrations of EC(a) (estimated by thermal analysis with a correction for charring) and BC(e) (estimated by LTM) averaged 5.2 +/- 1.3 and 3.1 +/- 0.8 mu g m(-3), respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption Angstrom exponent of particles in the size range of 0.1 to 1.0 mu m from >2.0 to approximately 1.2. The size-resolved BC(e) measured by the LTM showed a clear maximum between 0.4 and 0.6 mu m in diameter. The concentrations of OC and BC(e) varied diurnally during the dry period, and this variation is related to diurnal changes in boundary layer thickness and in fire frequency.
Resumo:
Multispectral widefield optical imaging has the potential to improve early detection of oral cancer. The appropriate selection of illumination and collection conditions is required to maximize diagnostic ability. The goals of this study were to (i) evaluate image contrast between oral cancer/precancer and non-neoplastic mucosa for a variety of imaging modalities and illumination/collection conditions, and (ii) use classification algorithms to evaluate and compare the diagnostic utility of these modalities to discriminate cancers and precancers from normal tissue. Narrowband reflectance, autofluorescence, and polarized reflectance images were obtained from 61 patients and 11 normal volunteers. Image contrast was compared to identify modalities and conditions yielding greatest contrast. Image features were extracted and used to train and evaluate classification algorithms to discriminate tissue as non-neoplastic, dysplastic, or cancer; results were compared to histologic diagnosis. Autofluorescence imaging at 405-nm excitation provided the greatest image contrast, and the ratio of red-to-green fluorescence intensity computed from these images provided the best classification of dysplasia/cancer versus non-neoplastic tissue. A sensitivity of 100% and a specificity of 85% were achieved in the validation set. Multispectral widefield images can accurately distinguish neoplastic and non-neoplastic tissue; however, the ability to separate precancerous lesions from cancers with this technique was limited. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3516593]
Resumo:
Thanks to recent advances in molecular biology, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as cDNA microarrays and RNA-Seq. Particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. Methods have been developed for gene networks modeling and identification from expression profiles. However, an important open problem regards how to validate such approaches and its results. This work presents an objective approach for validation of gene network modeling and identification which comprises the following three main aspects: (1) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (2) a computational method for gene network identification from the simulated data, which is founded on a feature selection approach where a target gene is fixed and the expression profile is observed for all other genes in order to identify a relevant subset of predictors; and (3) validation of the identified AGN-based network through comparison with the original network. The proposed framework allows several types of AGNs to be generated and used in order to simulate temporal expression data. The results of the network identification method can then be compared to the original network in order to estimate its properties and accuracy. Some of the most important theoretical models of complex networks have been assessed: the uniformly-random Erdos-Renyi (ER), the small-world Watts-Strogatz (WS), the scale-free Barabasi-Albert (BA), and geographical networks (GG). The experimental results indicate that the inference method was sensitive to average degree k variation, decreasing its network recovery rate with the increase of k. The signal size was important for the inference method to get better accuracy in the network identification rate, presenting very good results with small expression profiles. However, the adopted inference method was not sensible to recognize distinct structures of interaction among genes, presenting a similar behavior when applied to different network topologies. In summary, the proposed framework, though simple, was adequate for the validation of the inferred networks by identifying some properties of the evaluated method, which can be extended to other inference methods.
Resumo:
Background: The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information), a new criterion function is here proposed. Results: In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN) model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions: A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5 <= q <= 3.5 (hence, subextensive entropy), which opens new perspectives for GRNs inference methods based on information theory and for investigation of the nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/dimreduction and http://code.google.com/p/dimreduction/.
Resumo:
Context tree models have been introduced by Rissanen in [25] as a parsimonious generalization of Markov models. Since then, they have been widely used in applied probability and statistics. The present paper investigates non-asymptotic properties of two popular procedures of context tree estimation: Rissanen's algorithm Context and penalized maximum likelihood. First showing how they are related, we prove finite horizon bounds for the probability of over- and under-estimation. Concerning overestimation, no boundedness or loss-of-memory conditions are required: the proof relies on new deviation inequalities for empirical probabilities of independent interest. The under-estimation properties rely on classical hypotheses for processes of infinite memory. These results improve on and generalize the bounds obtained in Duarte et al. (2006) [12], Galves et al. (2008) [18], Galves and Leonardi (2008) [17], Leonardi (2010) [22], refining asymptotic results of Buhlmann and Wyner (1999) [4] and Csiszar and Talata (2006) [9]. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background: Mutations in TP53 are common events during carcinogenesis. In addition to gene mutations, several reports have focused on TP53 polymorphisms as risk factors for malignant disease. Many studies have highlighted that the status of the TP53 codon 72 polymorphism could influence cancer susceptibility. However, the results have been inconsistent and various methodological features can contribute to departures from Hardy-Weinberg equilibrium, a condition that may influence the disease risk estimates. The most widely accepted method of detecting genotyping error is to confirm genotypes by sequencing and/or via a separate method. Results: We developed two new genotyping methods for TP53 codon 72 polymorphism detection: Denaturing High Performance Liquid Chromatography (DHPLC) and Dot Blot hybridization. These methods were compared with Restriction Fragment Length Polymorphism (RFLP) using two different restriction enzymes. We observed high agreement among all methodologies assayed. Dot-blot hybridization and DHPLC results were more highly concordant with each other than when either of these methods was compared with RFLP. Conclusions: Although variations may occur, our results indicate that DHPLC and Dot Blot hybridization can be used as reliable screening methods for TP53 codon 72 polymorphism detection, especially in molecular epidemiologic studies, where high throughput methodologies are required.
Resumo:
It has been demonstrated that laser induced breakdown spectrometry (LIBS) can be used as an alternative method for the determination of macro (P, K. Ca, Mg) and micronutrients (B, Fe, Cu, Mn, Zn) in pellets of plant materials. However, information is required regarding the sample preparation for plant analysis by LIBS. In this work, methods involving cryogenic grinding and planetary ball milling were evaluated for leaves comminution before pellets preparation. The particle sizes were associated to chemical sample properties such as fiber and cellulose contents, as well as to pellets porosity and density. The pellets were ablated at 30 different sites by applying 25 laser pulses per site (Nd:YAG@1064 nm, 5 ns, 10 Hz, 25J cm(-2)). The plasma emission collected by lenses was directed through an optical fiber towards a high resolution echelle spectrometer equipped with an ICCD. Delay time and integration time gate were fixed at 2.0 and 4.5 mu s, respectively. Experiments carried out with pellets of sugarcane, orange tree and soy leaves showed a significant effect of the plant species for choosing the most appropriate grinding conditions. By using ball milling with agate materials, 20 min grinding for orange tree and soy, and 60 min for sugarcane leaves led to particle size distributions generally lower than 75 mu m. Cryogenic grinding yielded similar particle size distributions after 10 min for orange tree, 20 min for soy and 30 min for sugarcane leaves. There was up to 50% emission signal enhancement on LIBS measurements for most elements by improving particle size distribution and consequently the pellet porosity. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The application of laser induced breakdown spectrometry (LIBS) aiming the direct analysis of plant materials is a great challenge that still needs efforts for its development and validation. In this way, a series of experimental approaches has been carried out in order to show that LIBS can be used as an alternative method to wet acid digestions based methods for analysis of agricultural and environmental samples. The large amount of information provided by LIBS spectra for these complex samples increases the difficulties for selecting the most appropriated wavelengths for each analyte. Some applications have suggested that improvements in both accuracy and precision can be achieved by the application of multivariate calibration in LIBS data when compared to the univariate regression developed with line emission intensities. In the present work, the performance of univariate and multivariate calibration, based on partial least squares regression (PLSR), was compared for analysis of pellets of plant materials made from an appropriate mixture of cryogenically ground samples with cellulose as the binding agent. The development of a specific PLSR model for each analyte and the selection of spectral regions containing only lines of the analyte of interest were the best conditions for the analysis. In this particular application, these models showed a similar performance. but PLSR seemed to be more robust due to a lower occurrence of outliers in comparison to the univariate method. Data suggests that efforts dealing with sample presentation and fitness of standards for LIBS analysis must be done in order to fulfill the boundary conditions for matrix independent development and validation. (C) 2009 Elsevier B.V. All rights reserved.