192 resultados para risk constraints
Resumo:
The aim of this study was to evaluate the predictive validity of the Braden Scale for Predicting Pressure Sore Risk in elderly residents of long-term care facilities (LTCFs) in Brazil. The determination of the cutoff score for the Brazilian population is important for the comparison between Brazilian and international studies and establishment of guidelines for prevention of pressure ulcers in our health care facilities. This is the first study of its kind in Brazil. This was a secondary analysis of a prospective cohort study conducted with 233 LTCF residents aged 60 and over who underwent complete skin examination and Braden Scale rating every 2 days for 3 months. Two groups of patients were considered: the total group (N = 233) and risk group (n = 94, total scores <= 18). Data from the first and last assessments were analyzed for sensitivity, specificity, and likelihood ratios. The best results were obtained for the total group, with cutoff scores of 18 and 17, sensitivity of 75.9% and 74.1%, specificity of 70.3% and 75.4%, and area under the receiver operating characteristic curve (AUC-ROC) of 0.79 and 0.81 at the first and last assessments, respectively. For the risk group, the cutoff scores of 16 (first assessment) and 13 (last assessment) were associated with a smaller AUC-ROC and, therefore, lower predictive accuracy. The Braden Scale showed good predictive validity in elderly LTCF residents. (Geriatr Nurs 2010;31:95-104)
Resumo:
AIM: We sought to evaluate the predictive validity of the Waterlow Scale in hospitalized patients. SUBJECTS AND SETTING: The study was conducted at a general private hospital with 220 beds and a mean time of hospitalization of 7.4 days and a mean occupation rate of approximately 80%. Adult patients with a Braden Scale score of 18 or less and a Waterlow Scale score of 16 or more were studied. The sample consisted of 98 patients with a mean age of 71.1 +/- 15.5 years. METHODS: Skin assessment and scoring by using the Waterlow and Braden scales were completed on alternate days. Patients were examined at least 3 times to be considered for analysis. The data were submitted to sensitivity and specificity analysis by using receiver operating characteristic (ROC) curves and positive (+LR) and negative (-LR) likelihood ratios. RESULTS: The cutoff scores were 17, 20, and 20 in the first, second, and third assessment, respectively. Sensitivity was 71.4%, 85.7%, and 85.7% and specificity was 67.0%, 40.7%, and 32.9%, respectively. Analysis of the area under the ROC curve revealed good accuracy (0.64, 95% confidence interval [CI]: 0.35-0.93) only for the cutoff score 17 in the first assessment. The results also showed probabilities of 14%, 10%, and 9% for the development of pressure ulcer when the test results were positive (+LR) and of 3% (-LR) when the test results were negative for the cutoff scores in the first, second, and third assessment, respectively. CONCLUSION: The Waterlow Scale achieved good predictive validity in predicting pressure ulcer in hospitalized patients when a cutoff score of 17 was used in the first assessment.
Resumo:
Objective: to identify risk factors associated with neonatal transfers from a free-standing birth centre to a hospital. Design: epidemiological case-control study. Setting: midwifery-led free-standing birth centre in Sao Paulo, Brazil. Participants: 96 newborns were selected from 2840 births between September 1998 and August 2005. Cases were defined as all new borns transferred from the birth centre to a hospital (n = 32), and controls were defined as new borns delivered at the same birth centre, during the same time period, and who had not been transferred to a hospital (n = 64). Measurements and findings: data were collected from medical records available at the birth centre. Univariate and multivariate analyses were performed using logistic regression. The multivariate analysis included outcomes with p<0.25, specifically: smoking during pregnancy, prenatal care appointments, labour complications, weight in relation to gestational age, and one-minute Apgar score. Of the foregoing outcomes, those that remained in the full regression model as a risk factor associated with neonatal transfer were: smoking during pregnancy [p = 0.009, odds ratio (OR) = 4.1,95% confidence interval (CI) 1.03-16.33], labour complications (p<0.001, OR = 5.5, 95% CI 1.06-28.26) and one-minute Apgar score <= 7 (p<0.001, OR = 7.8,95% CI 1.62-37.03). Key conclusions and implications for practice: smoking during pregnancy, labour complications and one-minute Apgar score <= 7 were confirmed as risk factors for neonatal transfer from the birth centre to a hospital. The identified risk factors can help to improve institutional protocols and formulate hypotheses for other studies. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Background: There is growing demand for the adoption of qualification systems for health care practices. This study is aimed at describing the development and validation of indicators for evaluation of biologic occupational risk control programs. Methods: The study involved 3 stages: (1) setting up a research team, (2) development of indicators, and (3) validation of the indicators by a team of specialists recruited to validate each attribute of the developed indicators. The content validation method was used for the validation, and a psychometric scale was developed for the specialists` assessment. A consensus technique was used, and every attribute that obtained a Content Validity Index of at least 0.75 was approved. Results: Eight indicators were developed for the evaluation of the biologic occupational risk prevention program, with emphasis on accidents caused by sharp instruments and occupational tuberculosis prevention. The indicators included evaluation of the structure, process, and results at the prevention and biologic risk control levels. The majority of indicators achieved a favorable consensus regarding all validated attributes. Conclusion: The developed indicators were considered validated, and the method used for construction and validation proved to be effective.
Resumo:
This paper presents an approach for the active transmission losses allocation between the agents of the system. The approach uses the primal and dual variable information of the Optimal Power Flow in the losses allocation strategy. The allocation coefficients are determined via Lagrange multipliers. The paper emphasizes the necessity to consider the operational constraints and parameters of the systems in the problem solution. An example, for a 3-bus system is presented in details, as well as a comparative test with the main allocation methods. Case studies on the IEEE 14-bus systems are carried out to verify the influence of the constraints and parameters of the system in the losses allocation.
Resumo:
This paper describes the modeling of a weed infestation risk inference system that implements a collaborative inference scheme based on rules extracted from two Bayesian network classifiers. The first Bayesian classifier infers a categorical variable value for the weed-crop competitiveness using as input categorical variables for the total density of weeds and corresponding proportions of narrow and broad-leaved weeds. The inferred categorical variable values for the weed-crop competitiveness along with three other categorical variables extracted from estimated maps for the weed seed production and weed coverage are then used as input for a second Bayesian network classifier to infer categorical variables values for the risk of infestation. Weed biomass and yield loss data samples are used to learn the probability relationship among the nodes of the first and second Bayesian classifiers in a supervised fashion, respectively. For comparison purposes, two types of Bayesian network structures are considered, namely an expert-based Bayesian classifier and a naive Bayes classifier. The inference system focused on the knowledge interpretation by translating a Bayesian classifier into a set of classification rules. The results obtained for the risk inference in a corn-crop field are presented and discussed. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Despite modern weed control practices, weeds continue to be a threat to agricultural production. Considering the variability of weeds, a classification methodology for the risk of infestation in agricultural zones using fuzzy logic is proposed. The inputs for the classification are attributes extracted from estimated maps for weed seed production and weed coverage using kriging and map analysis and from the percentage of surface infested by grass weeds, in order to account for the presence of weed species with a high rate of development and proliferation. The output for the classification predicts the risk of infestation of regions of the field for the next crop. The risk classification methodology described in this paper integrates analysis techniques which may help to reduce costs and improve weed control practices. Results for the risk classification of the infestation in a maize crop field are presented. To illustrate the effectiveness of the proposed system, the risk of infestation over the entire field is checked against the yield loss map estimated by kriging and also with the average yield loss estimated from a hyperbolic model.
Resumo:
The paper presents the development of a decision support system for the management of geotechnical and environmental risks in oil pipelines using a geographical information system. The system covers a 48.5 km long section of the So Paulo to Brasilia (OSBRA) oil pipeline, which crosses three municipalities in the northeast region of the So Paulo state (Brazil) and represents an area of 205.8 km(2). The spatial database was created using geo-processing procedures, surface and intrusive investigations and geotechnical reports. The risk assessment was based mainly on qualitative models (relative numeric weights and multicriteria decision analysis) and considered pluvial erosion, slope movements, soil corrosion and third party activities. The maps were produced at a scale of 1:10,000.
Resumo:
In all-optical networks, management of physical layer restrictions should collaborate in lightpath establishment. Label-Switched Path validation in Generalized MultiProtocol Label Switching on Dense Wavelength Division Multiplexing network requires the treatment of the physical impairment-related parameters along the provisioned route. In this paper we propose, for the first time in our view, the generation of an optical layer database by simulation that specifically characterizes the dynamic FWM impairments for the lightpaths provisioned in a GMPLS/DWDM network.
Resumo:
A novel methodology to assess the risk of power transformer failures caused by external faults, such as short-circuit, taking the paper insulation condition into account, is presented. The risk index is obtained by contrasting the insulation paper condition with the probability that the transformer withstands the short-circuit current flowing along the winding during an external fault. In order to assess the risk, this probability and the value of the degree of polymerization of the insulating paper are regarded as inputs of a type-2 fuzzy logic system (T2-FLS), which computes the fuzzy risk level. A Monte Carlo simulation has been used to find the survival function of the currents flowing through the transformer winding during a single-phase or a three-phase short-circuit. The Roy Billinton Test System and a real power system have been used to test the results. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A new, simple approach for modeling and assessing the operation and response of the multiline voltage-source controller (VSC)-based flexible ac transmission system controllers, namely the generalized interline power-flow controller (GIPFC) and the interline power-flow controller (IPFC), is presented in this paper. The model and the analysis developed are based on the converters` power balance method which makes use of the d-q orthogonal coordinates to thereafter present a direct solution for these controllers through a quadratic equation. The main constraints and limitations that such devices present while controlling the two independent ac systems considered, will also be evaluated. In order to examine and validate the steady-state model initially proposed, a phase-shift VSC-based GIPFC was also built in the Alternate Transients Program program whose results are also included in this paper. Where applicable, a comparative evaluation between the GIPFC and the IPFC is also presented.
Resumo:
This study presents a decision-making method for maintenance policy selection of power plants equipment. The method is based on risk analysis concepts. The method first step consists in identifying critical equipment both for power plant operational performance and availability based on risk concepts. The second step involves the proposal of a potential maintenance policy that could be applied to critical equipment in order to increase its availability. The costs associated with each potential maintenance policy must be estimated, including the maintenance costs and the cost of failure that measures the critical equipment failure consequences for the power plant operation. Once the failure probabilities and the costs of failures are estimated, a decision-making procedure is applied to select the best maintenance policy. The decision criterion is to minimize the equipment cost of failure, considering the costs and likelihood of occurrence of failure scenarios. The method is applied to the analysis of a lubrication oil system used in gas turbines journal bearings. The turbine has more than 150 MW nominal output, installed in an open cycle thermoelectric power plant. A design modification with the installation of a redundant oil pump is proposed for lubricating oil system availability improvement. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Pipeline systems play a key role in the petroleum business. These operational systems provide connection between ports and/or oil fields and refineries (upstream), as well as between these and consumer markets (downstream). The purpose of this work is to propose a novel MINLP formulation based on a continuous time representation for the scheduling of multiproduct pipeline systems that must supply multiple consumer markets. Moreover, it also considers that the pipeline operates intermittently and that the pumping costs depend on the booster stations yield rates, which in turn may generate different flow rates. The proposed continuous time representation is compared with a previously developed discrete time representation [Rejowski, R., Jr., & Pinto, J. M. (2004). Efficient MILP formulations and valid cuts for multiproduct pipeline scheduling. Computers and Chemical Engineering, 28, 1511] in terms of solution quality and computational performance. The influence of the number of time intervals that represents the transfer operation is studied and several configurations for the booster stations are tested. Finally, the proposed formulation is applied to a larger case, in which several booster configurations with different numbers of stages are tested. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Clock signal distribution in telecommunication commercial systems usually adopts a master-slave architecture, with a precise time basis generator as a master and phase-locked loops (PLLs) as slaves. In the majority of the networks, second-order PLLs are adopted due to their simplicity and stability. Nevertheless, in some applications better transient responses are necessary and, consequently, greater order PLLs need to be used, in spite of the possibility of bifurcations and chaotic attractors. Here a master-slave network with third-order PLLs is analyzed and conditions for the stability of the synchronous state are derived, providing design constraints for the node parameters, in order to guarantee stability and reachability of the synchronous state for the whole network. Numerical simulations are carried out in order to confirm the analytical results. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The representation of sustainability concerns in industrial forests management plans, in relation to environmental, social and economic aspects, involve a great amount of details when analyzing and understanding the interaction among these aspects to reduce possible future impacts. At the tactical and operational planning levels, methods based on generic assumptions usually provide non-realistic solutions, impairing the decision making process. This study is aimed at improving current operational harvesting planning techniques, through the development of a mixed integer goal programming model. This allows the evaluation of different scenarios, subject to environmental and supply constraints, increase of operational capacity, and the spatial consequences of dispatching harvest crews to certain distances over the evaluation period. As a result, a set of performance indicators was selected to evaluate all optimal solutions provided to different possible scenarios and combinations of these scenarios, and to compare these outcomes with the real results observed by the mill in the study case area. Results showed that it is possible to elaborate a linear programming model that adequately represents harvesting limitations, production aspects and environmental and supply constraints. The comparison involving the evaluated scenarios and the real observed results showed the advantage of using more holistic approaches and that it is possible to improve the quality of the planning recommendations using linear programming techniques.