53 resultados para resistance to chemicals
Resumo:
We isolated 45 Helicobacter pylori strains from 217 child patients. Resistance to clarithromycin, metronidazole, amoxicillin, and tetracycline was detected in 27%, 13%, 4%, and 0% of strains, respectively. The A2143G mutation was the most prevalent (67%) among clarithromycin-resistant strains. In addition, strain genotyping revealed a significant association between gastritis severity and the simultaneous presence of cagA, vacA s1m1, iceA2, and babA2 genes.
Resumo:
Storage at low temperature is the most frequently used method to extend the shelf life of banana fruit, and is fundamental for extended storage and transport over long distances. However, storage and transport conditions must be carefully controlled because of the high susceptibility of many commercial cultivars to chilling injury. The physiological behavior of bananas at low temperatures has been studied to identify possible mechanisms of resistance to chilling injury. The aim of this work was to evaluate differences in the starch-to-sucrose metabolism of a less tolerant and susceptible (Musa acuminata, AAA cv. Nanicao) and a more tolerant (M. acuminata x Musa balbusiana, AAB, cv. Prata) banana cultivar to chilling injury. Fruits of these cultivars were stored in chambers at 13 degrees C for 15 d, at which point they were transferred to 19 degrees C, where they were left until complete ripening. The low temperature induced significant changes in the metabolism of starch and sucrose in comparison to fruit ripened only at 19 degrees C. The sucrose accumulation was slightly higher in cv. Prata, and different patterns of starch degradation, sucrose synthesis, activity and protein levels of the alpha-and beta-amylases, starch phosphorylase, sucrose synthase and sucrose phosphate synthase were detected between the cultivars. Our results suggest that starch-to-sucrose metabolism is likely part of the mechanism for cold acclimation in banana fruit, and the cultivar-dependent differences contribute to their ability to tolerate cold temperatures. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Leptin resistance and desensitization of hypophagia during prolonged inflammatory challenge. Am J Physiol Endocrinol Metab 300: E858-E869, 2011. First published February 22, 2011; doi: 10.1152/ajpendo.00558.2010.-Acute exposure to bacterial lipopolysaccharide (LPS) is a potent inducer of immune response as well as hypophagia. Nevertheless, desensitization of responses to LPS occurs during long-term exposure to endotoxin. We induced endotoxin tolerance, injecting repeated (6LPS) LPS doses compared with single (1LPS) treatment. 1LPS, but not 6LPS group, showed decreased food intake and body weight, which was associated with an increased plasma leptin and higher mRNA expression of OB-Rb, MC4R, and SOCS3 in the hypothalamus. Hypophagia induced by 1LPS was associated with lower levels of 2-arachidonoylglycerol (2-AG), increased number of p-STAT3 neurons, and decreased AMP-activated protein kinase (AMPK) activity. Desensitization of hypophagia in the 6LPS group was related to high 2-AG, with no changes in p-STAT3 or increased p-AMPK. Leptin decreased food intake, body weight, 2-AG levels, and AMPK activity and enhanced p-STAT3 in control rats. However, leptin had no effects on 2-AG, p-STAT3, or p-AMPK in the 1LPS and 6LPS groups. Rats treated with HFD to induce leptin resistance showed neither hypophagia nor changes in p-STAT3 after 1LPS, suggesting that leptin and LPS recruit a common signaling pathway in the hypothalamus to modulate food intake reduction. Desensitization of hypophagia in response to repeated exposure to endotoxin is related to an inability of leptin to inhibit AMPK phosphorylation and 2-AG production and activate STAT3. SOCS3 is unlikely to underlie this resistance to leptin signaling in the endotoxin tolerance. The present model of prolonged inflammatory challenge may contribute to further investigations on mechanisms of leptin resistance.
Resumo:
Resistance to drug is a major cause of treatment failure in pediatric brain cancer. The multidrug resistance (MDR) phenotype can be mediated by the superfamily of adenosine triphosphate-binding cassette (ABC) transporters. The dynamics of expression of the MDR genes after exposure to chemotherapy, especially the comparison between pediatric brain tumors of different histology, is poorly described. To compare the expression profiles of the multidrug resistance genes ABCB1, ABCC1, and ABCG2 in different neuroepithelial pediatric brain tumor cell lines prior and following short-term culture with vinblastine. Immortalized lineages from pilocytic astrocytoma (R286), anaplasic astrocytoma (UW467), glioblastoma (SF188), and medulloblastoma (UW3) were exposed to vinblastine sulphate at different schedules (10 and 60 nM for 24 and 72 h). Relative amounts of mRNA expression were analyzed by real-time quantitative polymerase chain reaction. Protein expression was assessed by immunohistochemistry for ABCB1, ABCC1, and ABCG2. mRNA expression of ABCB1 increased together with augmenting concentration and time of exposure to vinblastine for R286, UW467, and UW3 cell lines. Interestingly, ABCB1 levels of expression diminished in SF188. Following chemotherapy, mRNA expression of ABCC1 decreased in all cell lines other than glioblastoma. ABCG2 expression was influenced by vinblastine only for UW3. The mRNA levels showed consistent association to protein expression in the selected sets of cell lines analyzed. The pediatric glioblastoma cell line SF188 shows different pattern of expression of multidrug resistance genes when exposed to vinblastine. These preliminary findings may be useful in determining novel strategies of treatment for neuroepithelial pediatric brain tumors.
Resumo:
Different genes might be involved in Colletotrichum lindemuthianum resistance in leaves and stem of common bean. This work aimed to study the genetic mechanisms of the resistance in the leaf and stem in segregating populations from backcrosses involving resistant cultivar AN 910408 and susceptible cultivar Ruda inoculated with spore suspensions of C. lindemuthianum race 83. Our results indicate that two genes which interact epistatically, one dominant and one recessive, are involved in the genetic control of leaf anthracnose resistance. As for stem anthracnose resistance, two genes also epistatic, one dominant and one recessive, explain the resistance to C. lindemuthianum race 83. The recessive gene is the same for leaf and stem resistance; however, the dominant genes are distinct and independent from each other. The three independent resistance genes of AN 910408 observed in this work could be derived from Guanajuato 31.
Resumo:
This study evaluated the resistance to demineralization and fluoride incorporation of enamel irradiated with Er:YAG. A total of 110 bovine teeth were selected and divided into eight groups: unlased, 37% phosphoric acid, and samples irradiated with the Er:YAG laser at several fluences (31.84 J/cm(2), 25.47 J/cm(2), 19.10 J/cm(2), 2.08 J/cm(2), 1.8 J/cm(2), and 0.9 J/cm(2)). The application of acidulated phosphate fluoride was performed after treatments. All samples were immersed in 2 ml of 2.0 M acetic-acetate acid solution at pH 4.5 for 8 h, and fluoride, calcium, and phosphorus ions dissolved were analyzed by atomic absorption spectrometry and spectrophotometry. The phosphoric acid and 31.84 J/cm(2) groups presented the lowest dissolution of calcium and phosphorus ions. Higher fluoride incorporation was observed on 1.8 J/cm(2) and 0.9 J/cm(2) groups. Based on these results, Er:YAG laser was able to decrease acid dissolution and increase fluoride uptake and can be a promissory alternative for preventive dentistry.
Resumo:
Statement of problem. Dental fractures can occur in endodontically treated teeth restored with posts. Purpose. The purpose of this study was to evaluate the in vitro fracture resistance of roots with glass-fiber and metal posts of different lengths. Material and methods. Sixty endodontically treated maxillary canines were embedded in acrylic resin, except for 4 mm of the cervical area, after removing the clinical crowns. The post spaces were opened with a cylindrical bur at low speed attached to a surveyor, resulting in preparations with lengths of 6 mm (group 6 mm), 8 mm (group 8 mm), or 10 mm (group 10 mm). Each group was divided into 2 subgroups according to the post material: cast post and core or glass-fiber post (n=30). The posts were luted with dual-polymerizing resin cement (Panavia F). Cast posts and cores of Co-Cr (Resilient Plus) crowns were made and cemented with zinc phosphate. Specimens were subjected to increasing compressive load (N) until fracture. Data were analyzed with 2-way ANOVA and the Tukey-Kramer test (alpha=.05). Results. The ANOVA analysis indicated significant differences (P<.05) among the groups, and the Tukey test revealed no significant difference among the metal posts of 6-mm length (26.5 N +/- 13.4), 8-mm length (25.2 N +/- 13.9), and 10-mm length (17.1 N +/- 5.2). Also, in the glass-fiber post group, there was no significant difference when posts of 8-mm length (13.4 N +/- 11.0) were compared with the 6-mm (6.9 N +/- 4.6) and 10-mm (31.7 N +/- 13.1) groups. The 10-mm-long post displayed superior fracture resistance, and the 6-mm-long post showed significantly lower mean values (P<.001). Conclusions. Within the limitations of this study, it was concluded that the glass-fiber post represents a viable alternative to the cast metal post, increasing the resistance to fracture of endodontically treated canines. (J Prosthet Dent 2009;101:183-188)
Resumo:
Salivary contamination is one of the factors that can disturb the sealing process and interfere in the longevity of pit and fissure sealants. Erbium : yttrium-aluminum-garnet (Er : YAG) laser could influence the bond strength of enamel and increase the acid resistance. To evaluate the influence of Er : YAG laser on the shear bond strength of a sealant to a salivary contaminated enamel surface. Twenty-four third molars had the roots sectioned 2 mm coronal to the cementoenamel junction. The crowns were mesiodistally sectioned providing 48 halves that were embedded in polyester resin. Enamel was flattened and a 2-mm diameter bonding area was demarcated. Specimens were randomly assigned to two groups according to the superficial pretreatment-37% phosphoric acid (A) and Er : YAG laser (80 mJ/2 Hz) + phosphoric acid (L), which were subdivided into two groups (N = 12), without salivary contamination (C) and with salivary contamination (SC). To contaminate the specimens, 0.25 mL of human fresh saliva was applied for 20 seconds and then dried. Fluroshield sealant was applied in all specimens. After storage, shear bond strength of samples were tested in a universal testing machine. Means in MPa were: AC-14.61 (+/- 2.52); ASC-6.66 (+/- 2.34); LC-11.91 (+/- 1.34); and LSC-2.22 (+/- 0.66). Statistical analysis revealed that surfaces without salivary contamination and with acid treatment had the highest mean (p < 0.05). The group with salivary contamination treated by Er : YAG laser followed by phosphoric acid application presented the lowest bond values (p < 0.05). The phosphoric acid etching under dry condition yielded better bonding performance. Er : YAG laser was not able to increase the effectiveness of conventional acid etching of enamel in the bond of sealants in both dry and wet conditions. Under the conditions of this study, the conventional etching protocol (phosphoric acid without salivary contamination) is still preferable to laser-conditioning enamel surface prior to sealant application.