188 resultados para recombinant gamma interferon
Resumo:
Purpose: Bacillus Calmette-Guerin (BCG) continues to be employed as the most effective immunotherapy against superficial bladder cancer. We have developed an rBCG-S1PT strain that induces a stronger cellular immune response than BCG. This preclinical study was designed to test the potential of rBCG-S1PT as an immunotherapeutic agent for intravesical bladder cancer therapy. Materials and methods: A tumor was induced in C57BL/6 mice after chemical cauterization of the bladder and inoculation of the tumor cell line MB49. Next, mice were treated by intravesical instillation with BCG, rBCG-S1PT, or PBS once a week for 4 weeks. After 35 days, the bladders were removed and weighed, Th1 (IL-2, IL-12, INOS, INF-gamma, TNF-alpha), and Th2 (IL-5, IL-6, IL-10, TGF-beta) cytokine mRNA responses in individual mice bladders were measured by quantitative real time PCR, and the viability of MB49 cells in 18-hour coculture with splenocytes from treated mice was assessed. In an equivalent experiment, animals were observed for 60 days to quantify their survival. Results: Both BCG and rBCG-S1PT immunotherapy resulted in bladder weight reduction, and rBCG-S1PT increased survival time compared with the control group. There were increases in TNF-alpha in the BCG treated group, as well as increases in TNF-alpha and IL-10 mRNA in the rBCG-S1PT group. The viability of MB49 cells cocultured with splenocytes from rBCG-S1PT-treated mice was lower than in both the BCG and control groups. Conclusions: rBCG-S1PT therapy improved outcomes and lengthened survival times. These results indicate that rBCG could serve as a useful substitute for wild-type BCG. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Tuberculosis has emerged as a major concern in patients with immuno-mediated diseases, including psoriasis, undergoing treatment with biologicals. However, it is not known whether the chronically activated immune system of psoriasis patients interferes with their Mycobacterium tuberculosis (Mtb)-specific immunity, especially in tuberculosis-endemic areas like Brazil. We evaluated T-cell responses to a Mtb lysate and to the recombinant Mtb proteins ESAT-6 and Ag85B of tuberculin skin test (TST) positive and TST negative patients with severe or mild/moderate, untreated psoriasis in three different assays: lymphocyte proliferation, enzyme immunoassay for interferon (IFN)-gamma and interleukin (IL)-10 production by peripheral blood mononuclear cells and overnight enzyme immunospot (ELISpot) for enumerating IFN-gamma-secreting cells. In our cohort, a low proportion (29%) of the severe psoriasis patients tested were TST-positive. IFN-gamma and IL-10 secretion and T-cell proliferation to Mtb antigens were reduced in TST-negative but not in TST-positive patients with severe psoriasis when compared to healthy controls with the same TST status. Similarly, severe psoriasis patients had decreased cytokine secretion and proliferative response to phytohemagglutinin. However, most psoriasis patients and healthy controls showed detectable numbers of IFN-gamma-secreting effector-memory T-cells in response to Mtb antigens by ELISpot. TST-negative, mild/moderate psoriasis patients had responses that were mostly intermediary between TST-negative controls and severe psoriasis patients. Thus, patients with severe psoriasis possess decreased anti-Mtb central memory T-cell responses, which may lead to false-negative results in the diagnosis of TB infection, but retain T-cell memory-effector activity against Mtb antigens. We hypothesize that the latter may confer some protection against tuberculosis reactivation.
Resumo:
Considering the potential role of macrophage migration inhibitory factor (MIF) in the inflammation process in placenta when infected by pathogens, we investigated the production of this cytokine in chorionic villous explants obtained from human first-trimester placentas stimulated with soluble antigen from Toxoplasma gondii (STAg). Parallel cultures were performed with villous explants stimulated with STAB, interferon-gamma (IFN-gamma), or STAB plus IFN-gamma. To assess the role of placental MIF on monocyte adhesiveness to human trophoblast, explants were co-cultured with human myelomonocytic THP-1 cells in the presence or absence of supernatant from cultures treated with STAB (SPN), SPN plus anti-MIF antibodies, or recombinant MIF. A significantly higher concentration of MIF was produced and secreted by villous explants treated with STAB or STAB plus IFN-gamma after 24-hour culture. Addition of SPN or recombinant MIF was able to increase THP-1 adhesion, which was inhibited after treatment with anti-MIF antibodies. This phenomenon was associated with intercellular adhesion molecule expression by villous explants. Considering that the processes leading to vertical dissemination of T. gondii remain widely unknown, our results demonstrate that MIF production by human first-trimester placenta is up-regulated by parasite antigen and may play an essential role as an autocrine/paracrine mediator in placental infection by T. gondii.
Resumo:
Background/Aim: Chagas` disease is caused by Trypanosoma cruzi and occurs in most Latin American countries. The protozoan may colonize the central nervous system (CNS) of immune-compromised human hosts, thus causing neuronal disorders. Systemic control of the intracellular forms of the parasite greatly depends on the establishment of a TH1 response and subsequent nitric oxide (NO) release. At the CNS, it is known that low concentrations of NO promote neuronal survival and growth, while high concentrations exert toxic effects and neuron death. Accounting for NO production by astrocytes is the glia-derived factor S100 beta, which is overproduced in some neurodegenerative diseases. In the current work, we studied the expression of NO, interferon (IFN)-gamma and S100 beta in the spinal cord tissue of IL-12p40KO mice infected with T. cruzi, a model of neurodegenerative process. Methods: IL-12p40KO and wild-type (WT) female mice infected with T. cruzi Sylvio X10/4 (10(5) trypomastigotes, intraperitoneally) were euthanized when IL-12p40KO individuals presented limb paralysis. Spinal cord sections were submitted to immunohistochemical procedures for localization of neurofilament, laminin, nitrotyrosine, NO synthases (NOS), IFN-gamma and S100 beta. The total number of neurons was estimated by stereological analysis and the area and intensity of immunoreactivities were assessed by microdensitometric/morphometric image analysis. Results: No lesion was found in the spinal cord sections of WT mice, while morphological disarrangements, many inflammatory foci, enlarged vessels, amastigote nests and dying neurons were seen at various levels of IL-12p40KO spinal cord. Compared to WT mice, IL-12p40KO mice presented a decrement on total number of neurons (46.4%, p<0.05) and showed increased values of immunoreactive area for nitrotyrosine (239%, p<0.01) and NOS (544%, p<0.001). Moreover, the intensity of nitrotyrosine (16%, p<0.01), NOS (38%, p<0.05) and S100 beta (21%, p<0.001) immunoreactivities were also augmented. No IFN-gamma labeled cells were seen in WT spinal cord tissue, contrary to IL-12p40KO tissue that displayed inflammatory infiltrating cells and also some parenchymal cells positively labeled.Conclusion: We suggest that overproduction of NO may account for neuronal death at the spinal cord of T. cruzi-infected IL-12p40KO mice and that IFN-gamma and S100 beta may contribute to NOS activation in the absence of IL-12. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
The present study evaluated the immunogenicity of new malaria vaccine formulations based on the 19 kDa C-terminal fragment of Plasmodium vivax Merozoite Surface Protein-1 (MSP1(19)) and the Salmonella enterica serovar Typhimurium flagellin (FIiC), a Toll-like receptor 5 (TLR5) agonist. FHC was used as an adjuvant either admixed or genetically linked to the P. vivax MSP1(19) and administered to C57BL/6 mice via parenteral (s.c.) or mucosal (i.n.) routes. The recombinant fusion protein preserved MSP1(19) epitopes recognized by Sera collected from P. vivax infected humans and TLR5 agonist activity. Mice parenterally immunized with recombinant P vivax MSPI 19 in the presence of FliC, either admixed or genetically linked, elicited strong and long-lasting MSP1 (19)-specific systemic antibody responses with a prevailing IgG1 subclass response. Incorporation of another TLR agonist, CpG ODN 1826, resulted in a more balanced response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response measured by interferon-gamma secretion. Finally, we show that MSPI 19-specific antibodies recognized the native protein expressed on the surface of P. vivax parasites harvested from infected humans. The present report proposes a new class of malaria vaccine formulation based on the use of malaria antigens and the innate immunity agonist FliC. it contains intrinsic adjuvant properties and enhanced ability to induce specific humoral and cellular immune responses when administered alone or in combination with other adjuvants. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Mycobacterium bovis Bacillus Calmette-Guerin (BCG) has been shown to down-regulate experimental allergic asthma, a finding that reinforced the hygiene hypothesis. We have previously found that recombinant BCG (rBCG) strain that express the genetically detoxified Si subunit of pertussis toxin (rBCG-S1PT) exerts an adjuvant effect that enhances Th1 responses against BCG proteins. Here we investigated the effect of this rBCG-S1PT on the classical ovalbumin-induced mouse model of allergic lung disease. We found that rBCG-S1PT was more effective than wild-type BCG in preventing Th2-mediated allergic immune responses. The inhibition of allergic lung disease was not associated with increased concentration of suppressive cytokines or with an increased number of pulmonary regulatory T cells but was positively correlated with the increase in IFN-gamma-producing T cells and T-bet expression in the lung. In addition, an IL-12-dependent mechanism appeared to be important to the inhibition of lung allergic disease. The inhibition of allergic inflammation was found to be restricted to the lung because when allergen challenge was given by the intraperitoneal route, rBCG-S1PT administration failed to inhibit peritoneal allergic inflammation and type 2 cytokine production. Our work offers a nonclassical interpretation for the hygiene hypothesis indicating that attenuation of lung allergy by rBCG could be due to the enhancement of local lung Th1 immunity induced by rBCG-S1PT. Moreover, it highlights the possible use of rBCG strains as multipurpose immunomodulators by inducing specific immunity against microbial products while protecting against allergic asthma.
Resumo:
INTRODUCTION: This study evaluated whether leprosy reactions could be associated with oral infection. METHODS: Leprosy patients (n = 38) with (Group I) and without (Group II) oral infections were selected. Reactions were identified from the clinical and histopathological features associated with serum C-reactive protein (CRP) and10kDa interferon-gamma-induced protein (IP-10) levels, determined before and after elimination of the foci of infection. RESULTS: Group I presented more reactions than group II did, and improvement of the reactions after dental treatment. Serum CRP and IP-10 did not differ before and after the dental treatment, but differed between the groups. CONCLUSIONS: Oral infection could be an exacerbating factor in leprosy reactions.
Resumo:
Chronic hepatitis C is often a progressive, fibrotic disease that can lead to cirrhosis and other complications. The recommended therapy is a combination of interferon and ribavirin. Besides its antiviral action, interferon is considered to have antifibrotic activity. We examined the outcome of hepatic fibrosis and inflammation in chronic hepatitis C patients who were non-responders to interferon. We made a case series, retrospective study, based on revision of medical records and reassessment of liver biopsies. For inclusion, patients should have been treated with interferon alone or combined with ribavirin, with no virological response (non responders and relapsers) and had a liver biopsy before and after treatment. Histological evaluation included: i-outcome of fibrosis and necroinflammation; ii-annual fibrosis progression rate evaluation, before and after treatment. Seventy-five patients were included. Fifty-seven patients (76%) did not show progression of fibrosis after treatment, compared to six (8%) before treatment (p < 0.001). The mean annual fibrosis progression rate was significantly reduced after treatment (p = 0.036). Inflammatory activity improved in 19 patients (25.3%). The results support the hypothesis of an antifibrotic effect of interferon-based therapy, in non-responder patients. There was evidence of anti-inflammatory effects of treatment in some patients.
Resumo:
Feline Immunodeficiency Virus is a worldwide infection and is considered a significant pathogen. The diagnosis of FIV infections is mainly based on commercially available rapid tests that are highly expensive in Brazil, hence it is rarely performed in the country. Furthermore, lentiviruses grow slowly and poorly in tissue cultures, making the production of viral antigen by classic means and thus the establishment of FIV immunodiagnosis impracticable. In order to deal with this, recombinant DNA techniques were adopted to produce the protein p24, a viral capsid antigen. The protein's reactivity evaluation analyzed by Western blot indicated that this recombinant antigen can be a useful tool for the immunodiagnostic of FIV infections.
Resumo:
In lymphocytes (LY), the well-documented antiproliferative effects of IFN-alpha are associated with inhibition of protein synthesis, decreased amino acid incorporation, and cell cycle arrest. However, the effects of this cytokine on the metabolism of glucose and glutamine in these cells have not been well investigated. Thus, mesenteric and spleen LY of male Wistar rats were cultured in the presence or absence of IFN-alpha, and the changes on glucose and glutamine metabolisms were investigated. The reduced proliferation of mesenteric LY was accompanied by a reduction in glucose total consumption (35%), aerobic glucose metabolism (55%), maximal activity of glucose-6-phosphate dehydrogenase (49%), citrate synthase activity (34%), total glutamine consumption (30%), aerobic glutamine consumption (20.3%) and glutaminase activity (56%). In LY isolated from spleen, IFN alpha also reduced the proliferation and impaired metabolism. These data demonstrate that in LY, the antiproliferative effects of IFN alpha are associated with a reduction in glucose and glutamine metabolisms.
Resumo:
Interleukin-22 (IL-22) is a class 2 cytokine whose primary structure is similar to that of interleukin 10 (IL-10) and interferon-gamma (IFN-gamma). IL-22 induction during acute phase immune response indicates its involvement in mechanisms of inflammation. Structurally different from IL-10 and a number of other members of IL-10 family, which form intertwined inseparable V-shaped dimers of two identical polypeptide chains, a single polypeptide chain of IL-22 folds on itself in a relatively globular structure. Here we present evidence, based on native gel electrophoresis, glutaraldehyde cross-linking, dynamic light scattering, and small angle x-ray scattering experiments, that human IL-22 forms dimers and tetramers in solution under protein concentrations assessable by these experiments. Unexpectedly, low-resolution molecular shape of IL-22 dimers is strikingly similar to that of IL-10 and other intertwined cytokine dimeric forms. Furthermore, we determine an ab initio molecular shape of the IL-22/IL-22R1 complex which reveals the V-shaped IL-22 dimer interacting with two cognate IL-22R1 molecules. Based on this collective evidence, we argue that dimerization might be a common mechanism of all class 2 cytokines for the molecular recognition with their respective membrane receptor. We also speculate that the IL-22 tetramer formation could represent a way to store the cytokine in nonactive form at high concentrations that could be readily converted into functionally active monomers and dimers upon interaction with the cognate cellular receptors.
Resumo:
Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL). Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199-314) and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73 +/- 12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-gamma secretion, ratios of IFN-gamma/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNF alpha/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5-88.23%; p = 0.011) that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-gamma/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and for multivalent vaccines against NHs-dependent pathogens.
Resumo:
Background: Since successful treatment of superficial bladder cancer with BCG requires proper induction of Th1 immunity, we have developed a rBCG-S1PT strain that induced a stronger cellular immune response than BCG. This preclinical study was designed to compare the modulatory effects of BCG and rBCG-S1PT on bladder TNF-alpha and IL-10 expression and to evaluate antitumour activity. Methods: For Experiment I, the MB49 bladder cancer cell line was used in C57BL/6 mice. Chemical cauterization of the bladder was performed to promote intravesical tumor implantation. Mice were treated by intravesical instillation with BCG, rBCG-S1PT or PBS once a week for four weeks. After 35 days the bladders were removed and weighed. TNF-
Resumo:
Background: Treatment of multinodular goiters (MNGs) is highly controversial. Radioiodine (RAI) therapy is a nonsurgical alternative for the elderly who decline surgery. Recently, recombinant human thyrotropin (rhTSH) has been used to augment RAI uptake and distribution. In this study, we determined the outcome of 30 mCi RAI preceded by rhTSH (0.1 mg) in euthyroid (EU) and hyperthyroid (subclinical/clinical) patients with large MNGs. Methods: This was a prospective cohort study. Forty-two patients (age, 43-80 years) with MNGs were treated with 30 mCi RAI after stimulation with 0.1 mg of rhTSH. Patients were divided into three groups, according to thyroid function: EU (n = 18), subclinically hyperthyroid (SC-H, n = 18), and clinically hyperthyroid (C-H, n = 6). All patients underwent a 90-day low-iodine diet before treatment, and those with clinical hyperthyroidism received methimazole 10 mg daily for 30 days. Serum TSH, free thyroxine (FT4), total triiodothyronine (TT3), and thyroglobulin were measured at baseline and at 24, 48, 72, 168 hours, and 1, 3, 6, 9, 12, 18, 24, and 36 months after therapy. Thyroid volume was assessed by computed tomography at baseline and every 6 months. Results: Patients had high iodine urinary excretion (308 +/- 108 mu g I/L) at baseline. TSH levels at baseline were within the normal range (1.5 +/- 0.7 mu U/mL) in the EU group and suppressed (< 0.3 mu U/mL) in the SC-H and C-H groups. After rhTSH, serum TSH peaked at 24 hours reaching 12.4 +/- 5.85 mu U/mL. After RAI administration, patients in both hyperthyroid groups had a higher increase in FT4 and TT3 compared with those in the EU group (p < 0.001). Thyroglobulin levels increased equally in all three groups until day 7. Thyroid volume decreased significantly in all patients. Side effects were more common in the SC-H and C-H groups (31.4% and 60.4%, respectively) compared with EU patients (17.8%). Permanent hypothyroidism was more prevalent in the EU group (50%) compared with the SC-H (11%) and C-H (16.6%) groups. Conclusions: Patients with MNG may have subclinical and clinical nonautoimmune iodine-induced hyperthyroidism. Despite a low-iodine diet and therapy with methimazole, hyperthyroid patients have a significantly higher increase in FT4 and TT3 levels after RAI ablation. This can lead to important side effects related mostly to the cardiac system. We strongly advise that patients with SC-H and C-H be adequately treated with methimazole and low-iodine diet aiming to normalize their hyperthyroid condition before rhTSH-stimulated treatment with RAI.
Resumo:
Aim: Modified low-density lipoprotein (mLDL), mainly upon oxidative and enzymatic modification, is the major atherogenic lipoprotein. Conversely, high-density lipoprotein (HDL) is considered anti-atherogenic because of its ability to remove cholesterol. The aim of this work was to analyze both the influence of HDL on the uptake of mLDL and the expression of CD36 and Fc gamma I receptors on monocytic cell lines during cell differentiation. Methods: Uptake of fluorescein isothiocyanate (FITC)-conjugated LDL and FITC-conjugated mLDL, i.e., copper-oxidized LDL (oxLDL) or trypsin enzyme modified LDL (enzLDL), was analyzed, as well as the expression of CD36 and Fc gamma RI in THP-1 and U937 cells, using flow cytometry. Results: HDL inhibited the uptake of mLDL, which varied in degree depending on the cell line or type of mLDL. Further, HDL rapidly decreased CD36 and Fc gamma RI involved in the uptake of mLDL. Conclusions: We demonstrate that modified LDL promotes specific LDL receptor-independent uptake by monocytic cell lines, and that the uptake of LDL and enzLDL is less than that of oxLDL. In this process, HDL diminishes the uptake of LDL or mLDL, which may involve the down-regulation of receptors (CD36 and Fc gamma I). This regulatory process represents another way by which HDL can be anti-atherogenic and it depends on the type of modification of LDL and the stage of differentiation of monocytes to macrophages.