103 resultados para pyrolysis process
Resumo:
The biological nitritation/denitritation process in the removal of organic matter and nitrogen in a landfill leachate was studied using an activated sludge sequencing batch reactor Treatment cycles were formed by an anoxic and an aerobic phases in which the conditions for oxidation of the influent N load and the prevalence of nitrite concentration at the end of aerobic treatment cycles were determined as well as the use of organic matter present in the leachate as a carbon source for denim-firing organisms in the anoxic stage The removal efficiencies of N-NO(2) at the end of the anoxic process (48h) ranged between 14 and 30% indicating low availability of biodegradable organic matter in the leachate As for the accumulation of N-NO(2) at the end of the aerobic phase (48h) of treatment cycles imbalances were not observed while 100% removal efficiencies of N and specific nth-dation rates from 0 095 to 0 158kgN-NH(3)/kgSSV per day were recorded demonstrating the applicability of simplified nitrification in the treatment of effluents with low C/N ratios
Resumo:
Tropical countries, such as Brazil and Colombia, have the possibility of using agricultural lands for growing biomass to produce bio-fuels such as biodiesel and ethanol. This study applies an energy analysis to the production process of anhydrous ethanol obtained from the hydrolysis of starch and cellulosic and hemicellulosic material present in the banana fruit and its residual biomass. Four different production routes were analyzed: acid hydrolysis of amylaceous material (banana pulp and banana fruit) and enzymatic hydrolysis of lignocellulosic material (flower stalk and banana skin). The analysis considered banana plant cultivation, feedstock transport, hydrolysis, fermentation, distillation, dehydration, residue treatment and utility plant. The best indexes were obtained for amylaceous material for which mass performance varied from 346.5 L/t to 388.7 L/t, Net Energy Value (NEV) ranged from 9.86 MJ/L to 9.94 MJ/L and the energy ratio was 1.9 MJ/MJ. For lignocellulosic materials, the figures were less favorable: mass performance varied from 86.1 to 123.5 L/t, NEV from 5.24 10 8.79 MJ/L and energy ratio from 1.3 to 1.6 MJ/MJ. The analysis showed, however, that both processes can be considered energetically feasible. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
An alternative for ethanol production, is the use of vegetable waste, such as excess of banana production, that are evaluated in 2,400,000 t/year, which includes: residual banana fruit and lignocellulosic material. This paper analyzes the energetic and exergetic behavior to carry the process developed at laboratory scale to a plant processing of banana for the ethanol production, involving: growing and transport of the vegetable material, hydrolysis of banana fruit, sugar fermentation, ethanol distillation and utility plant. Finally, energy and exergy indicators are obtained. The results show a positive energy balance when banana fruit is used for ethanol production, but some process modification must be done looking for improving the exergetic efficiency in ethanol production.
Resumo:
High velocity oxi-fuel (HVOF) thermal spray process has been used in order to deposit a new alloy known as multicomponent white cast iron. The coatings were characterized in terms of macrostructure, phase composition, porosity and hardness. Coating characteristics and properties were found to be dependent on the particles size range, spray distance, gases flow rate and oxygen to propane ratio. For set of parameters utilized in this job a narrow particle size range between 20 and 45 gm with a spray distance of 200 mm and oxygen to propane ratio of 4.6 are the preferred coating parameters. Coating porosity of 0.9% and hardness of 766 HV were obtained under these conditions. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Tungsten carbide has a wide range of applications, mainly cemented carbides made of WC and Co, as wear resistant materials. However, the high cost of WC-Co powders encourages the use of a substrate to manufacture a functionally graded material (FGM) tool made of WC-Co and a tool steel. These materials join the high wear resistance of the cemented carbide and the toughness of the steel. This work deals with the study interaction of the WC-Co and H13 steel to design a functionally graded material by means of spark plasma sintering (SPS). The SPS, a novel sintering technique reaching the consolidation of the powders at relatively low temperatures and short dwell times, is a promising technique in processing materials. In this study, WC, H13 steel, WC-Co, WC-H13 steel and WC-Co-H13 steel bulk samples were investigated using scanning electron microscopy and X-ray diffraction techniques to evaluate the phase transformations involved during SPS consolidation process. The W(2)C and W(3)Fe(3)C precipitation were identified after the SPS consolidation of the WC and WC-H13 steel samples, respectively. The precipitation Of W(4)Co(2)C was also identified in the WC-Co and WC-Co-H13 steel samples. The WC-H 13 steel and WC-Co-H13 steel were also evaluated after heat treatments at 1100 degrees C for 9 h, which enhanced the chemical interaction and the precipitation of W(3)Fe(3)C and W(4)Co(2)C, respectively. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The technology of self-reducing pellets for ferro-alloys production is becoming an emerging process due to the lower electric energy consumption and the improvement of metal recovery in comparison with the traditional process. This paper presents the effects of reduction temperature, addition of ferro-silicon and addition of slag forming agents for the production of high carbon ferro-chromium by utilization of self-reducing pellets. These pellets were composed of Brazilian chromium ore (chromite) concentrate, petroleum coke, Portland cement, ferro-silicon and slag forming components (silica and hydrated lime). The pellets were processed at 1 773 K, 1 823 K and 1 873 K using an induction furnace. The products obtained, containing slag and metallic phases, were analyzed by scanning electron microscopy and chemical analyses (XEDS). A large effect on the reduction time was observed by increasing the temperature from 1 773 K to 1 823 K for pellets without Fe-Si addition: around 4 times faster at 1 823 K than at 1 773 K for reaction fraction close to one. However, when the temperature was further increased from 1 823 K to 1 873 K the kinetics improved by double. At 1 773 K, the addition of 2% of ferro-silicon in the pellet resulted in an increasing reaction rate of around 6 times, in comparison with agglomerate without it. The addition of fluxing agents (silica and lime), which form initial slag before the reduction is completed, impaired the full reduction. These pellets became less porous after the reduction process.
Resumo:
This work addressed the production of carbon nanomaterials (CNMs) by catalytic conversion of wastes from the bioethanol industry, in the form of either sugarcane bagasse or corn-derived distillers dried grains with solubles (DDGS). Both bagasse and DDGS were pyrolysed at temperatures in the range of 600-1000 degrees C. The pyrolyzate gases were then used as CNM growth agents by chemical vapor deposition on stainless steel meshes, serving as both catalysts and substrates. CNM synthesis temperatures of 750-1000 degrees C were explored, and it was determined that their growth was most pronounced at 1000 degrees C. The nanomaterials produced from pyrolysis of bagasse were in the form of long, straight, multi-wall nanotubes with smooth walls and axially uniform diameters. Typical lengths were circa 50 mu m and diameters were in the range of 20-80 nm. The nanomaterials produced from pyrolysis of DDGS were in the form of long, entangled, rope-like structures with rugged walls, and axially non-uniform diameters. Typical diameters were in the range of 100-300 nm and their lengths were in the tens of microns. This process also produces a bio-syngas byproduct that is enriched in hydrogen. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Coatings based on NiCrAlC intermetallic based alloy were applied on AISI 316L stainless steel substrates using a high velocity oxygen fuel torch. The influence of the spray parameters on friction and abrasive wear resistance were investigated using an instrumented rubber wheel abrasion test, able to measure the friction forces. The corrosion behaviour of the coatings were studied with electrochemical techniques and compared with the corrosion resistance of the substrate material. Specimens prepared using lower O(2)/C(3)H(8) ratios showed smaller porosity values. The abrasion wear rate of the NiCrAlC coatings was much smaller than that described in the literature for bulk as cast materials with similar composition and one order of magnitude higher than bulk cast and heat treated (aged) NiCrAlC alloy. All coatings showed higher corrosion resistance than the AISI 316L substrate in HCl (5%) aqueous solution at 40 degrees C.
Resumo:
This paper discusses the effects of temperature, addition of ferro-silicon and fluxing agents for the production of high carbon ferro-chromium by self-reducing process. The use of self-reducing agglomerates for ferro-alloys production is becoming an emerging processing technology due to lowering the electric energy consumption and improving the metal recovery in comparison with traditional ones. The self-reducing pellets were composed by chromite, petroleum coke, cement and small (0.1% - 2%) addition of ferro-silicon. The slag composition was adjusted by addition of fluxing agents. The reduction of pellets was carried out at 1773K (1500 degrees C), 1823K (1550 degrees C) and 1873K (1600 degrees C) by using induction furnace. The products obtained, containing slag and metallic phases, were analyzed by scanning electron microscopy and chemical analyses (XEDS). By increasing temperature from 1773K to 1823K large effect on the reduction time was observed. It decreased from 30 minutes to 10 minutes, for reaching around 0.98 reduction fraction. No significant effect on reduction time was observed when the reduction temperature was increased from 1823K to 1873K. At 1773K, the addition of 2% of ferro-silicon in the pellet resulted in an increasing reaction rate of around 6 times, in comparison with agglomerate without this addition. The addition of fluxing agents (silica and hydrated lime) has effect on reduction time (inverse relationship) and the pellets become less porous after reduction.
Resumo:
Green tapes of Li(2)O-ZrO(2)-SiO(2)-Al(2)O(3) (LZSA) parent glass were produced by aqueous tape casting as the starting material for the laminated object manufacturing (LOM) process. The rheological behavior of the powder suspensions in aqueous media, as well as the mechanical properties of the cast tapes, was evaluated. According to xi potential measurements, the LZSA glass powder particles showed acid surface characteristics and an IEP of around 4 when in aqueous media. The critical volume fraction of solids was about 72 wt% (27 vol%), which hindered the processability of more concentrated slurries. The glass particles also showed an anisometric profile, which contributed to an increase in the interactions between particles during flow. Therefore, the suspensions could not be processed at high solids loadings. Aqueous-based glass suspensions were also characterized by shear thickening after the addition of dispersants. Three slurry compositions were formulated, suitable green tapes were cast, and tapes were successfully laminated by LOM to a gear wheel geometry. A higher tensile strength of the green tapes corresponded to a higher tensile strength of the laminates. Thermal treatment was then applied to the laminates: pyrolysis at 525 degrees C, sintering at 700 degrees C for 1 h, and crystallization at 850 degrees C for 30 min. A 20% volumetric shrinkage was observed, but no surface flaws or inhomogeneous areas were detected. The sintered part maintained the curved edges and internal profile after heat treatment.
Resumo:
This contribution describes the development of a continuous emulsion copolymerization processs for vinyl acetate and n-butyl acrylate in a tubular reactor. Special features of this reactor include the use of oscillatory (pulsed) flow and internals (sieve plates) to prevent polymer fouling and promote good radial mixing, along with a controlled amount of axial mixing. The copolymer system studied (vinyl acetate and butyl acrylate) is strongly prone to composition drift due to very different reactivity ratios. An axially dispersed plug flow model, based on classical free radical copolymerization kinetics, was developed for this process and used successfully to optimize the lateral feeding profile to reduce compositional drift. An energy balance was included in the model equations to predict the effect of temperature variations on the process. The model predictions were validated with experimental data for monomer conversion, copolymer composition, average particle size, and temperature measured along the reactor length.
Resumo:
This work presents a mathematical model for the vinyl acetate and n-butyl acrylate emulsion copolymerization process in batch reactors. The model is able to explain the effects of simultaneous changes in emulsifier concentration, initiator concentration, monomer-to-water ratio, and monomer feed composition on monomer conversion, copolymer composition and, to lesser extent, average particle size evolution histories. The main features of the system, such as the increase in the rate of polymerization as temperature, emulsifier, and initiator concentrations increase are correctly represented by the model. The model accounts for the basic features of the process and may be useful for practical applications, despite its simplicity and a reduced number of adjustable parameters.
Resumo:
Oxidation processes can be used to treat industrial wastewater containing non-biodegradable organic compounds. However, the presence of dissolved salts may inhibit or retard the treatment process. In this study, wastewater desalination by electrodialysis (ED) associated with an advanced oxidation process (photo-Fenton) was applied to an aqueous NaCl solution containing phenol. The influence of process variables on the demineralization factor was investigated for ED in pilot scale and a correlation was obtained between the phenol, salt and water fluxes with the driving force. The oxidation process was investigated in a laboratory batch reactor and a model based on artificial neural networks was developed by fitting the experimental data describing the reaction rate as a function of the input variables. With the experimental parameters of both processes, a dynamic model was developed for ED and a continuous model, using a plug flow reactor approach, for the oxidation process. Finally, the hybrid model simulation could validate different scenarios of the integrated system and can be used for process optimization.
Resumo:
The objective of this paper is to develop and validate a mechanistic model for the degradation of phenol by the Fenton process. Experiments were performed in semi-batch operation, in which phenol, catechol and hydroquinone concentrations were measured. Using the methodology described in Pontes and Pinto [R.F.F. Pontes, J.M. Pinto, Analysis of integrated kinetic and flow models for anaerobic digesters, Chemical Engineering journal 122 (1-2) (2006) 65-80], a stoichiometric model was first developed, with 53 reactions and 26 compounds, followed by the corresponding kinetic model. Sensitivity analysis was performed to determine the most influential kinetic parameters of the model that were estimated with the obtained experimental results. The adjusted model was used to analyze the impact of the initial concentration and flow rate of reactants on the efficiency of the Fenton process to degrade phenol. Moreover, the model was applied to evaluate the treatment cost of wastewater contaminated with phenol in order to meet environmental standards. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper, three single-control charts are proposed to monitor individual observations of a bivariate Poisson process. The specified false-alarm risk, their control limits, and ARLs were determined to compare their performances for different types and sizes of shifts. In most of the cases, the single charts presented better performance rather than two separate control charts ( one for each quality characteristic). A numerical example illustrates the proposed control charts.