59 resultados para protein kinase G
Resumo:
Positive acute effects of fatty acids (FA) on glucose-stimulated insulin secretion (GSIS) and reactive oxygen species (ROS) formation have been reported. However, those studies mainly focused on palmitic acid actions, and reports on oleic acid (OA) are scarce. In this study, the effect of physiological OA levels on beta-cell function and the mechanisms involved were investigated. Analyses of insulin secretion, FA and glucose oxidation, and ROS formation showed that, at high glucose concentration, OA treatment increases GSIS in parallel with increased ROS content. At high glucose, OA oxidation was increased, accompanied by a suppression of glucose oxidation. Using approaches for protein knockdown of FA receptor G protein-coupled receptor 40 (GPR40) and of p47(PHOX), a reduced nicotinamide adenine dinucleotide phosphate [NAD(P) H] oxidase component, we observed that GPR40 does not mediate OA effects on ROS formation and GSIS. However, in p47(PHOX) knockdown islets, OA-induced ROS formation and the inhibitory effect of OA on glucose metabolism was abolished. Similar results were obtained by pharmacological inhibition of protein kinase C, a known activator of NAD(P) H oxidase. Thus, ROS derived from OA metabolism via NAD(P) H oxidase are an inhibitor of glucose oxidation. Put together, these results indicate that OA acts as a modulator of glucose oxidation via ROS derived from its own metabolism in beta-cells. (Endocrinology 152: 3614-3621, 2011)
Resumo:
Salivary gland dysfunction is a feature in diabetes and hypertension. We hypothesized that sodium-glucose cotransporter 1 (SGLT1) participates in salivary dysfunctions through a sympathetic- and protein kinase A (PKA)-mediated pathway. In Wistar-Kyoto (WKY), diabetic WKY (WKY-D), spontaneously hypertensive (SHR), and diabetic SHR (SHR-D) rats, PKA/SGLT1 proteins were analyzed in parotid and submandibular glands, and the sympathetic nerve activity (SNA) to the glands was monitored. Basal SNA was threefold higher in SHR (P < 0.001 vs. WKY), and diabetes decreased this activity (similar to 50%, P < 0.05) in both WKY and SHR. The catalytic subunit of PKA and the plasma membrane SGLT1 content in acinar cells were regulated in parallel to the SNA. Electrical stimulation of the sympathetic branch to salivary glands increased (similar to 30%, P < 0.05) PKA and SGLT1 expression. Immunohistochemical analysis confirmed the observed regulations of SGLT1, revealing its location in basolateral membrane of acinar cells. Taken together, our results show highly coordinated regulation of sympathetic activity upon PKA activity and plasma membrane SGLT1 content in salivary glands. Furthermore, the present findings show that diabetic- and/or hypertensive-induced changes in the sympathetic activity correlate with changes in SGLT1 expression in basolateral membrane of acinar cells, which can participate in the salivary glands dysfunctions reported by patients with these pathologies.
Resumo:
Renoguanylin (REN) is a recently described member of the guanylin family, which was first isolated from eels and is expressed in intestinal and specially kidney tissues. In the present work we evaluate the effects of REN on the mechanisms of hydrogen transport in rat renal tubules by the stationary microperfusion method. We evaluated the effect of 1 mu M and 10 mu M of renoguanylin (REN) on the reabsorption of bicarbonate in proximal and distal segments and found that there was a significant reduction in bicarbonate reabsorption. In proximal segments, REN promoted a significant effect at both 1 and 10 mu M concentrations. Comparing control and REN concentration of 1 mu M, JHCO(3)(-) . nmol cm(-2) s(-1) -1,76 +/- 0.11(control) x 1,29 +/- 0,08(REN) 10 mu m: P<0.05, was obtained. In distal segments the effect of both concentrations of REN was also effective, being significant e.g. at a concentration of 1 mu M (JHCO(3)(-), nmol cm(-2) s(-1) -0.80 +/- 0.07(control) x 0.60 +/- 0.06(REN) 1 mu m; P<0.05), although at a lower level than in the proximal tubule. Our results suggest that the action of REN on hydrogen transport involves the inhibition of Na(+)/H(+) exchanger and H(+)-ATPase in the luminal membrane of the perfused tubules by a PKG dependent pathway. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Aims Glycosylation with beta-N-acetylglucosamine (O-GlcNAcylation) is one of the most complex post-translational modifications. The cycling of O-GlcNAc is controlled by two enzymes: UDP-NAc transferase (OGT) and O-GlcNAcase (OGA). We recently reported that endothelin-1 (ET-1) augments vascular levels of O-GlcNAcylated proteins. Here we tested the hypothesis that O-GlcNAcylation contributes to the vascular effects of ET-1 via activation of the RhoA/Rho-kinase pathway. Methods and results Incubation of vascular smooth muscle cells (VSMCs) with ET-1 (0.1 mu M) produces a time-dependent increase in O-GlcNAc levels. ET-1-induced O-GlcNAcylation is not observed when VSMCs are previously transfected with OGT siRNA, treated with ST045849 (OGT inhibitor) or atrasentan (ET(A) antagonist). ET-1 as well as PugNAc (OGA inhibitor) augmented contractions to phenylephrine in endothelium-denuded rat aortas, an effect that was abolished by the Rho kinase inhibitor Y-27632. Incubation of VSMCs with ET-1 increased expression of the phosphorylated forms of myosin phosphatase target subunit 1 (MYPT-1), protein kinase C-potentiated protein phosphatase 1 inhibitor protein (protein kinase C-potentiated phosphatase inhibitor-17), and myosin light chain (MLC) and RhoA expression and activity, and this effect was abolished by both OGT siRNA transfection or OGT inhibition and atrasentan. ET-1 also augmented expression of PDZ-Rho GEF (guanine nucleotide exchange factor) and p115-Rho GEF in VSMCs and this was prevented by OGT siRNA, ST045849, and atrasentan. Conclusion We suggest that ET-1 augments O-GlcNAcylation and this modification contributes to increased vascular contractile responses via activation of the RhoA/Rho-kinase pathway.
Resumo:
PURPOSE. Interleukin (IL)-17, which is responsible for the initial influx of leukocytes into the target tissue, was recently described as the main cytokine involved in autoimmune diseases. Vogt-Koyanagi-Harada (VKH) syndrome is a significant cause of noninfectious blindness in the world. Herein the authors aimed at unraveling the involvement of IL-17 in VKH and in experimental autoimmune uveitis, focusing on the signaling pathways involved in IL-17 synthesis. METHODS. Mice were immunized with 161-180 peptide and pertussis toxin. Draining lymph node cells, harvested 21 days after immunization, were cultured in the presence or absence of p38 alpha mitogen-activated protein kinase (MAPK) inhibitor (SB203580) and assayed for cytokine production and quantification of CD4(+)IL-17(+) cells. Mice received intraocular injections of SB203580, and disease severity was evaluated by histologic examination of the enucleated eyes at day 21. CD4(+) lymphocytes from MSK-1/2-deficient mice, human CD4(+) cells silenced with MSK1 siRNA, or peripheral blood mononuclear cells (PBMCs) from VKH patients were cultured in the presence or absence of p38 alpha MAPK inhibitor and then assayed for IL-17, IFN-gamma, and IL-4 production. RESULTS. The inhibition of p38 alpha MAPK fully blocked the synthesis of IL-17 by PBMCs from VKH patients and lymphocytes from EAU mice. The absence of the msk1/2 gene resulted in failure to produce IL-17 by murine and human lymphocytes. Interestingly, intraocular injections of SB203580 in EAU mice did not suppress development of the disease. CONCLUSIONS. These data show that p38 alpha MAPK-MSK1/2 is involved in the control of IL-17 synthesis by CD4(+) T cells and that inhibition of p38 alpha MAPK in vitro suppresses IL-17 synthesis but that inhibition of this kinase in vivo did not protect from EAU. (Invest Ophthalmol Vis Sci. 2010;51:3567-3574) DOI: 10.1167/iovs.09-4393
Resumo:
In alveolar macrophages, leukotriene (IT) B(4) and cysteinyl LTs (LTC(4), LTD(4) and LTE(4)) both enhance Fc gamma receptor (Fc gamma R)-mediated phagocytosis. In the present study we investigated the role of specific PKC isoforms (PKC-alpha and -delta), the MAP kinases p38 and ERK 1/2, and PI3K in mediating the potentiation of Fc gamma R-mediated phagocytosis induced by addition of leukotrienes to the AMs. It was found that exogenously added LTB(4) and LTD(4) both enhanced PKC-delta and -alpha phosphorylation during Fc gamma R engagement. Studies with isoform-selective inhibitors indicated that exogenous LTB(4) effects were dependent on both PKC-alpha and -delta, while LTD(4) effects were exclusively due to PKC-delta activation. Although both exogenous LTB(4) and LTD(4) enhanced p38 and ERK 1/2 activation, LTB(4) required only ERK 1/2, while LTD(4) required only p38 activation. Activation by both LTs was dependent on PI3K activation. Effects of endogenous LTs on kinase activation were also investigated using selective LT receptor antagonists. Endogenous LTB(4) contributed to Fc gamma R-mediated activation of PKC-alpha, ERK 1/2 and PI3K, while endogenous cysLTs contributes to activation of PKC-delta, p38 and PI3K. Taken together, our data show that the capacities of LTB(4) and LTD(4) to enhance Fc gamma R-mediated phagocytosis reflect their differential activation of specific kinase programs. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Antigen-presenting cells (APCs) control T-cell responses by multiple mechanisms, including the expression of co-stimulatory molecules and the production of cytokines and other mediators that control T-cell proliferation, survival and differentiation. Here, we demonstrate that soluble factor(s) produced by Toll-like receptor (TLR)-activated APCs suppress activation-induced cell death (AICD). This effect was observed in non-stimulated APCs, but it was significantly increased after lipopolysaccharide (LPS) treatment. Using different KO mice, we found that the LPS-induced protective factor is dependent on TLR4/MyD88. We identified the protective factor as prostaglandin E-2(PGE(2)) and showed that both APC-derived supernatants and PGE(2) prevented CD95L upregulation in T cells in response to TCR/CD3 stimulation, thereby avoiding both AICD and activated T cell killing of target macrophages. The PGE(2) receptors, EP2 and EP4, appear to be involved since pharmacological stimulation of these receptors mimics the protective effect on T cells and their respective antagonists interfere with the protection induced by either APCs derived or synthetic PGE(2). Finally, the engagement of EP2 and EP4 synergistically activates protein kinase A (PKA) and exchange protein directly activated by cAMP pathways to prevent AICD. Taken together, these results indicate that APCs can regulate T-cell levels of CD95L by releasing PGE2 in response to LPS through a TLR4/MyD88-dependent pathway, with consequences for both T cell and their own survival.
Resumo:
Diabetic patients are more susceptible to infections, and their inflammatory response is impaired. This is restored by insulin treatment. In the present study, we investigated the effect of insulin on LPS-induced signaling pathways and mediators in the lung of diabetic rats. Diabetic male Wistar rats (alloxan, 42 mg/kg i.v., 10 days) and control rats received intratracheal instillation of LPS (750 mu g/0.4 mL) or saline. Some diabetic rats were given neutral protamine Hagedorn insulin (4 IU s.c.) 2 h before LPS. After 6 h, bronchoalveolar lavage was performed for the release of mediators, and lung tissue was homogenized for analysis of LPS-induced signaling pathways. Relative to control rats, diabetic rats exhibited a significant reduction in the LPS-induced phosphorylation of extracellular signal-regulated kinase (64%), p38 (70%), protein kinase B (67%), and protein kinase C alpha (57%) and delta (65%) and in the expression of iNOS (32%) and cyclooxygenase 2 (67%) in the lung homogenates. The bronchoalveolar lavage fluid concentrations of NO (47%) and IL-6 (49%) were also reduced in diabetic rats, whereas the cytokine-induced neutrophil chemoattractant 2 (CINC-2) levels were increased 23%, and CINC-1 was not different from control animals. Treatment of diabetic rats with insulin completely or partially restored all these parameters. In conclusion, data presented show that insulin regulates mitogen-activated protein kinase, phosphatidylinositol 3`-kinase, protein kinase C pathways, expression of the inducible enzymes, cyclooxygenase 2 and iNOS, and levels of IL-6 and CINC-2 in LPS-induced lung inflammation in diabetic rats. These results suggest that the protective effect of insulin in sepsis could be due to modulation of cellular signal transduction factors.
Resumo:
Carraro-Lacroix LR, Malnic G, Girardi AC. Regulation of Na(+)/H(+) exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells. Am J Physiol Renal Physiol 297: F1647-F1655, 2009. First published September 23, 2009; doi:10.1152/ajprenal.00082.2009.-The gut incretin hormone glucagon-like peptide 1 (GLP-1) is released in response to ingested nutrients and enhances insulin secretion. In addition to its insulinotropic properties, GLP-1 has been shown to have natriuretic actions paralleled by a diminished proton secretion. We therefore studied the role of the GLP-1 receptor agonist exendin-4 in modulating the activity of Na(+)/H(+) exchanger NHE3 in LLC-PK(1) cells. We found that NHE3-mediated Na(+)-dependent intracellular pH (pH(i)) recovery decreased similar to 50% after 30-min treatment with 1 nM exendin-4. Pharmacological inhibitors and cAMP analogs that selectively activate protein kinase A (PKA) or the exchange protein directly activated by cAMP (EPAC) demonstrated that regulation of NHE3 activity by exendin-4 requires activation of both cAMP downstream effectors. This conclusion was based on the following observations: 1) the PKA antagonist H-89 completely prevented the effect of the PKA activator but only partially blocked the exendin-4-induced NHE3 inhibition; 2) the MEK1/2 inhibitor U-0126 abolished the effect of the EPAC activator but only diminished the exendin-4-induced NHE3 inhibition; 3) combination of H-89 and U-0126 fully prevented the effect of exendin-4 on NHE3; 4) no additive effect in the inhibition of NHE3 activity was observed when exendin-4, PKA, and EPAC activators were used together. Mechanistically, the inhibitory effect of exendin-4 on pHi recovery was associated with an increase of NHE3 phosphorylation. Conversely, this inhibition took place without changes in the surface expression of the transporter. We conclude that GLP-1 receptor agonists modulate sodium homeostasis in the kidney, most likely by affecting NHE3 activity.
Resumo:
HSP90 proteins are important molecular chaperones involved in multiple cellular processes. This work reports the characterization of cDNAs encoding two distinct HSP90 proteins (named HSP90A and HSP90B) from the chytridiomycete Blastocladiella emersonii. Deduced amino acid sequences of HSP90A and HSP90B exhibit signatures of the cytosolic and endoplasmic reticulum (ER) HSP90 proteins, respectively. A genomic clone encoding HSP90A was also characterized indicating the presence of a single intron of 184 bp interrupting the coding region, located near the amino-terminus of the protein. Expression of both HSP90A and HSP90B genes increases significantly during heat shock at 38 degrees C, with highest induction ratios observed in cells stressed during germination of the fungus. Changes in the amount of HSP90A transcript were also evaluated during B. emersonii life cycle at physiological temperature (27 degrees C), and its levels were found to increase both during germination and sporulation of the fungus. HSP90A protein levels were analyzed during B. emersonii life cycle and significant changes were observed only during sporulation. Furthermore, during heat stress a large increase in the amount of HSP90A protein was observed. Induction of HSP90A and HSP90B genes during heat stress indicates the importance of both genes in the response to high temperature in B. emersonii. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The neurohypophyseal hormone arginine vasopressin (AVP) is a classic mitogen in many cells. In K-Ras-dependent mouse Y1 adrenocortical malignant cells, AVP elicits antagonistic responses such as the activation of the PKC and the ERK1/2 mitogenic pathways to down-regulate cyclin D1 gene expression, which induces senescence-associated beta-galactosidase (SA-beta Gal) and leads to cell cycle arrest. Here, we report that in the metabolic background of Y1 cells, PKC activation either by AVP or by PMA inhibits the PI3K/Akt pathway and stabilises the p27(Kip1) protein even in the presence of the mitogen fibroblast growth factor 2 (FGF2). These results suggest that p27(Kip1) is a critical signalling node in the mechanisms underlying the survival of the Y1 cells. In Y1 cells that transiently express wild-type p27(Kip1), AVP caused a severe reduction in cell survival, as shown by clonogenic assays. However, AVP promoted the survival of Y1 cells transiently expressing mutant p27-S10A or mutant p27-T187A, which cannot be phosphorylated at Ser10 and Thr187, respectively. In addition, PKC activation by PMA mimics the toxic effect caused by AVP in Y1 cells, and inhibition of PKC completely abolishes the effects caused by both PMA and AVP in clonogenic assays. The vulnerability of Y1 cells during PKC activation is a phenotype conditioned upon K-ras oncogene amplification because K-Ras down-regulation with an inducible form of the dominant-negative mutant H-RasN17 has resulted in Y1 cells that are resistant to AVP`s deleterious effects. These data show that the survival destabilisation of K-Ras-dependent Y1 malignant cells by AVP requires large quantities of the p27(Kip1) protein as well as phosphorylation of the p27(Kip1) protein at both Ser10 and Thr187. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The secreted cochaperone STI1 triggers activation of protein kinase A (PKA) and ERK1/2 signaling by interacting with the cellular prion (PrPC) at the cell surface, resulting in neuroprotection and increased neuritogenesis. Here, we investigated whether STI1 triggers PrPC trafficking and tested whether this process controls PrPC-dependent signaling. We found that STI1, but not a STI1 mutant unable to bind PrPC, induced PrPC endocytosis. STI1-induced signaling did not occur in cells devoid of endogenous PrPC; however, heterologous expression of PrPC reconstituted both PKA and ERK1/2 activation. In contrast, a PrPC mutant lacking endocytic activity was unable to promote ERK1/2 activation induced by STI1, whereas it reconstituted PKA activity in the same condition, suggesting a key role of endocytosis in the former process. The activation of ERK1/2 by STI1 was transient and appeared to depend on the interaction of the two proteins at the cell surface or shortly after internalization. Moreover, inhibition of dynamin activity by expression of a dominant-negative mutant caused the accumulation and colocalization of these proteins at the plasma membrane, suggesting that both proteins use a dynamin-dependent internalization pathway. These results show that PrPC endocytosis is a necessary step to modulate STI1-dependent ERK1/2 signaling involved in neuritogenesis.
Resumo:
Prion protein (PrP(C)) interaction with stress inducible protein 1 (STI1) mediates neuronal survival and differentiation. However, the function of PrP(C) in astrocytes has not been approached. In this study, we show that STI1 prevents cell death in wild-type astrocytes in a protein kinase A-dependent manner, whereas PrP(C)-null astrocytes were not affected by STI1 treatment. At embryonic day 17, cultured astrocytes and brain extracts derived from PrP(C)-null mice showed a reduced expression of glial fibrillary acidic protein (GFAP) and increased vimentin and nestin expression when compared with wild-type, suggesting a slower rate of astrocyte maturation in PrP(C)-null animals. Furthermore, PrP(C)-null astrocytes treated with STI1 did not differentiate from a flat to a process-bearing morphology, as did wild-type astrocytes. Remarkably, STI1 inhibited proliferation of both wild-type and PrP(C)-null astrocytes in a protein kinase C-dependent manner. Taken together, our data show that PrP(C) and STI1 are essential to astrocyte development and act through distinct signaling pathways.(C) 2009 Wiley-Liss, Inc.
Resumo:
Reaction of 2-acetylpyridine semicarbazone (H2APS), 3-acetylpyridine semicarbazone (H3APS) and 4-acetylpyridine semicarbazone (H4APS) with [VO(acac)(2)] (acac = acetylacetonate) gave [VO(H2APS)(acac)(2)] (1), (VO(H3APS)(acac)(2)] (2) and [VO(4APS)(acac) (H2O)] center dot 1/2H(2)O (3). Oxidation of complex 1 in acetonitrile gave [VO2(2APS)] (4). The crystal structures of complexes 1 and 4 have been determined. Complexes 1-3 were able to enhance glucose uptake and to inhibit glycerol release from adipocytes, which indicate their potential to act as insulin-mimics. (C) 2008 Elsevier Ltd. All rights reserved.