49 resultados para multisensory statistical learning
Resumo:
Objective: To compare the volume of the hippocampus and parahippocampal gyrus in elderly individuals with and without depressive disorders, and to determine whether the volumes of these regions correlate with scores on memory tests. Method: Clinical and demographic differences, as well as differences in regional gray matter volumes, were assessed in 48 elderly patients with depressive disorders and 31 control subjects. Brain (structural MRI) scans were processed using statistical parametric mapping and voxel-based morphometry. Cognitive tests were administered to subjects in both groups. Results: There were no between-group gray matter volume differences in the hippocampus or parahippocampal gyrus. In the elderly depressed group only, the volume of the left parahippocampal gyrus correlated with scores on the delayed naming portion of the visual verbal learning test. There were also significant direct correlations in depressed subjects between the volumes of the left hippocampus, right and left parahippocampal gyrus and immediate recall scores on verbal episodic memory tests and visual learning tests. In the control group, there were direct correlations only between overall cognitive performance (as assessed with the MMSE) and the volume of right hippocampus, and between the total score on the visual verbal learning test and the volume of the right and left parahippocampal gyrus. Conclusions: These findings highlight different patterns of relationship between cognitive performance and volumes of medial temporal structures in depressed individuals and healthy elderly subjects. The direct correlation between delayed visual verbal memory recall scores with left parahippocampal volumes specifically in elderly depressed individuals provides support to the view that depression in elderly populations may be a risk factor for dementia. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Objective: To develop a model to predict the bleeding source and identify the cohort amongst patients with acute gastrointestinal bleeding (GIB) who require urgent intervention, including endoscopy. Patients with acute GIB, an unpredictable event, are most commonly evaluated and managed by non-gastroenterologists. Rapid and consistently reliable risk stratification of patients with acute GIB for urgent endoscopy may potentially improve outcomes amongst such patients by targeting scarce health-care resources to those who need it the most. Design and methods: Using ICD-9 codes for acute GIB, 189 patients with acute GIB and all. available data variables required to develop and test models were identified from a hospital medical records database. Data on 122 patients was utilized for development of the model and on 67 patients utilized to perform comparative analysis of the models. Clinical data such as presenting signs and symptoms, demographic data, presence of co-morbidities, laboratory data and corresponding endoscopic diagnosis and outcomes were collected. Clinical data and endoscopic diagnosis collected for each patient was utilized to retrospectively ascertain optimal management for each patient. Clinical presentations and corresponding treatment was utilized as training examples. Eight mathematical models including artificial neural network (ANN), support vector machine (SVM), k-nearest neighbor, linear discriminant analysis (LDA), shrunken centroid (SC), random forest (RF), logistic regression, and boosting were trained and tested. The performance of these models was compared using standard statistical analysis and ROC curves. Results: Overall the random forest model best predicted the source, need for resuscitation, and disposition with accuracies of approximately 80% or higher (accuracy for endoscopy was greater than 75%). The area under ROC curve for RF was greater than 0.85, indicating excellent performance by the random forest model Conclusion: While most mathematical models are effective as a decision support system for evaluation and management of patients with acute GIB, in our testing, the RF model consistently demonstrated the best performance. Amongst patients presenting with acute GIB, mathematical models may facilitate the identification of the source of GIB, need for intervention and allow optimization of care and healthcare resource allocation; these however require further validation. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Context: Cannabis sativa use can impair verbal learning, provoke acute psychosis, and increase the risk of schizophrenia. It is unclear where C sativa acts in the human brain to modulate verbal learning and to induce psychotic symptoms. Objectives: To investigate the effects of 2 main psychoactive constituents of C sativa, Delta 9-tetrahydrocannabinol (Delta 9-THC) and cannabidiol, on regional brain function during verbal paired associate learning. Design: Subjects were studied on 3 separate occasions using a block design functional magnetic resonance imaging paradigm while performing a verbal paired associate learning task. Each imaging session was preceded by the ingestion of Delta 9-THC (10 mg), cannabidiol (600 mg), or placebo in a double-blind, randomized, placebo-controlled, repeated-measures, within-subject design. Setting: University research center. Participants: Fifteen healthy, native English-speaking, right-handed men of white race/ethnicity who had used C sativa 15 times or less and had minimal exposure to other illicit drugs in their lifetime. Main Outcome Measures: Regional brain activation ( blood oxygen level-dependent response), performance in a verbal learning task, and objective and subjective ratings of psychotic symptoms, anxiety, intoxication, and sedation. Results: Delta 9-Tetrahydrocannabinol increased psychotic symptoms and levels of anxiety, intoxication, and sedation, whereas no significant effect was noted on these parameters following administration of cannabidiol. Performance in the verbal learning task was not significantly modulated by either drug. Administration of Delta 9-THC augmented activation in the parahippocampal gyrus during blocks 2 and 3 such that the normal linear decrement in activation across repeated encoding blocks was no longer evident. Delta 9-Tetrahydrocannabinol also attenuated the normal time-dependent change in ventrostriatal activation during retrieval of word pairs, which was directly correlated with concurrently induced psychotic symptoms. In contrast, administration of cannabidiol had no such effect. Conclusion: The modulation of mediotemporal and ventrostriatal function by Delta 9-THC may underlie the effects of C sativa on verbal learning and psychotic symptoms, respectively.
Resumo:
This four-experiment series sought to evaluate the potential of children with neurosensory deafness and cochlear implants to exhibit auditory-visual and visual-visual stimulus equivalence relations within a matching-to-sample format. Twelve children who became deaf prior to acquiring language (prelingual) and four who became deaf afterwards (postlingual) were studied. All children learned auditory-visual conditional discriminations and nearly all showed emergent equivalence relations. Naming tests, conducted with a subset of the: children, showed no consistent relationship to the equivalence-test outcomes.. This study makes several contributions: to the literature on stimulus equivalence. First; it demonstrates that both pre- and postlingually deaf children-can: acquire auditory-visual equivalence-relations after cochlear implantation, thus demonstrating symbolic functioning. Second, it directs attention to a population that may be especially interesting for researchers seeking to analyze the relationship. between speaker and listener repertoires. Third, it demonstrates the feasibility of conducting experimental studies of stimulus control processes within the limitations of a hospital, which these children must visit routinely for the maintenance of their cochlear implants.