64 resultados para measurement equipment
Resumo:
This study presents a decision-making method for maintenance policy selection of power plants equipment. The method is based on risk analysis concepts. The method first step consists in identifying critical equipment both for power plant operational performance and availability based on risk concepts. The second step involves the proposal of a potential maintenance policy that could be applied to critical equipment in order to increase its availability. The costs associated with each potential maintenance policy must be estimated, including the maintenance costs and the cost of failure that measures the critical equipment failure consequences for the power plant operation. Once the failure probabilities and the costs of failures are estimated, a decision-making procedure is applied to select the best maintenance policy. The decision criterion is to minimize the equipment cost of failure, considering the costs and likelihood of occurrence of failure scenarios. The method is applied to the analysis of a lubrication oil system used in gas turbines journal bearings. The turbine has more than 150 MW nominal output, installed in an open cycle thermoelectric power plant. A design modification with the installation of a redundant oil pump is proposed for lubricating oil system availability improvement. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This work presents the implementation of the ultrasonic shear reflectance method for viscosity measurement of Newtonian liquids using wave mode conversion from longitudinal to shear waves and vice versa. The method is based on the measurement of the complex reflection coefficient (magnitude and phase) at a solid-liquid interface. The implemented measurement cell is composed of an ultrasonic transducer, a water buffer, an aluminum prism, a PMMA buffer rod, and a sample chamber. Viscosity measurements were made in the range from 1 to 3.5 MHz for olive oil and for automotive oils (SAE 40, 90, and 250) at 15 and 22.5 degrees C, respectively. Moreover, olive oil and corn oil measurements were conducted in the range from 15 to 30 degrees C at 3.5 and 2.25 MHz, respectively. The ultrasonic measurements, in the case of the less viscous liquids, agree with the results provided by a rotational viscometer, showing Newtonian behavior. In the case of the more viscous liquids, a significant difference was obtained, showing a clear non-Newtonian behavior that cannot be described by the Kelvin-Voigt model.
Resumo:
Nanomaterials have triggered excitement in both fundamental science and technological applications in several fields However, the same characteristic high interface area that is responsible for their unique properties causes unconventional instability, often leading to local collapsing during application Thermodynamically, this can be attributed to an increased contribution of the interface to the free energy, activating phenomena such as sintering and grain growth The lack of reliable interface energy data has restricted the development of conceptual models to allow the control of nanoparticle stability on a thermodynamic basis. Here we introduce a novel and accessible methodology to measure interface energy of nanoparticles exploiting the heat released during sintering to establish a quantitative relation between the solid solid and solid vapor interface energies. We exploited this method in MgO and ZnO nanoparticles and determined that the ratio between the solid solid and solid vapor interface energy is 11 for MgO and 0.7 for ZnO. We then discuss that this ratio is responsible for a thermodynamic metastable state that may prevent collapsing of nanoparticles and, therefore, may be used as a tool to design long-term stable nanoparticles.
Resumo:
Aims: We aimed to evaluate if the co-localisation of calcium and necrosis in intravascular ultrasound virtual histology (IVUS-VH) is due to artefact, and whether this effect can be mathematically estimated. Methods and results: We hypothesised that, in case calcium induces an artefactual coding of necrosis, any addition in calcium content would generate an artificial increment in the necrotic tissue. Stent struts were used to simulate the ""added calcium"". The change in the amount and in the spatial localisation of necrotic tissue was evaluated before and after stenting (n=17 coronary lesions) by means of a especially developed imaging software. The area of ""calcium"" increased from a median of 0.04 mm(2) at baseline to 0.76 mm(2) after stenting (p<0.01). In parallel the median necrotic content increased from 0.19 mm(2) to 0.59 mm(2) (p<0.01). The ""added"" calcium strongly predicted a proportional increase in necrosis-coded tissue in the areas surrounding the calcium-like spots (model R(2)=0.70; p<0.001). Conclusions: Artificial addition of calcium-like elements to the atherosclerotic plaque led to an increase in necrotic tissue in virtual histology that is probably artefactual. The overestimation of necrotic tissue by calcium strictly followed a linear pattern, indicating that it may be amenable to mathematical correction.
Resumo:
The design, construction, and characterization of a portable opto-coupled potentiostat are presented. The potentiostat is battery-powered, managed by a microcontroller, which implements cyclic voltammetry (CV) using suitable sensor electrodes. Its opto-coupling permits a wide range of current measurements, varying from mA to nA. Two software interfaces were developed to perform the CV measurement: a virtual instrument for a personal computer (PC) and a C-base interface for personal digital assistant (PDA). The potentiostat has been evaluated by detection of potassium ferrocyanide in KCl medium, both with macro and microelectrodes. There was good agreement between the instrumental results and those from commercial equipment.
Resumo:
The water diffusion attributable to concentration gradients is among the main mechanisms of water transport into the asphalt mixture. The transport of small molecules through polymeric materials is a very complex process, and no single model provides a complete explanation because of the small molecule`s complex internal structure. The objective of this study was to experimentally determine the diffusion of water in different fine aggregate mixtures (FAM) using simple gravimetric sorption measurements. For the purposes of measuring the diffusivity of water, FAMs were regarded as a representative homogenous volume of the hot-mix asphalt (HMA). Fick`s second law is generally used to model diffusion driven by concentration gradients in different materials. The concept of the dual mode diffusion was investigated for FAM cylindrical samples. Although FAM samples have three components (asphalt binder, aggregates, and air voids), the dual mode was an attempt to represent the diffusion process by only two stages that occur simultaneously: (1) the water molecules are completely mobile, and (2) the water molecules are partially mobile. The combination of three asphalt binders and two aggregates selected from the Strategic Highway Research Program`s (SHRP) Materials Reference Library (MRL) were evaluated at room temperature [23.9 degrees C (75 degrees F)] and at 37.8 degrees C (100 degrees F). The results show that moisture uptake and diffusivity of water through FAM is dependent on the type of aggregate and asphalt binder. At room temperature, the rank order of diffusivity and moisture uptake for the three binders was the same regardless of the type of aggregate. However, this rank order changed at higher temperatures, suggesting that at elevated temperatures different binders may be undergoing a different level of change in the free volume. DOI: 10.1061/(ASCE)MT.1943-5533.0000190. (C) 2011 American Society of Civil Engineers.
Resumo:
Development and Characterization of L-Alanyl-L-Glutamine Containing Pellets employing Extrusion-Spheronization Method and Drying Process in Fluidized Bad Equipment"". In this work, five formulations of L-alanyl-L-glutamine (glutamine dipeptide) containing pellets with different drug concentration were developed and evaluated: F1 (9.07%); F2 (17.70%); F3 (27.98%); F4 (37.74%) e F5 (47.53%). Pellets were prepared by extrusion-spheronization method and, further, dried in fluidized bad equipment. The following assays were carried out with the batches obtained: granulometry, friability, true density and morphologic analysis. Between the five formulations evaluated, pellets obtained from F3 present best yield (75.80%), most uniform particle size distribution (89.67% of pellets with size in the range of 0.80 to 1.18), most high true density (2.1634 g/ml) and best aspect (1.0795 +/- 0.0410). Due to these features, pellets obtained from F3 were considered adequate to further polymeric coating process in order to produce a multiparticulate system to prolong L-alanyl-L-glutamine release.
Resumo:
A tandem ionization chamber was developed for quality control programs of X-ray equipment used in conventional radiography and mammography. A methodology for the use of the tandem chamber in the constancy check of diagnostic X-ray beam qualities was established. The application at a medical X-ray imaging facility of this established methodology is presented. The use of the tandem chamber in the constancy check of diagnostic X-ray beam qualities is a useful method to control the performance of the X-ray equipment. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: The aim of this study was to determine whether the addition of the measurement of bilateral hip bone mineral density (BMD) has an impact on indications for osteoporosis (OP) treatment in community-dwelling elderly individuals, based on criteria from the National Osteoporosis Foundation (NOF). Methods: In total, 605 consecutive community-dwelling elderly individuals who were 65 years and older were evaluated. Dual energy X-ray absorptiometry was used to determine the lowest T-score in the lumbar spine + unilateral hip, the bilateral hips, and the lumbar spine + bilateral hips. Risk factors associated with the lowest T-score in these three conditions were applied to indicate treatment in accordance with NOF criteria. McNemar`s test was used to assess the difference of adding bilateral hip BMD measurements. Results: There was a significant difference in the frequency of pharmacological indication using NOF criteria together with the lowest T-score for the three tests (72.8% for lumbar spine + bilateral hips and 71.2% for lumbar spine + unilateral hip; p=0.002). A higher frequency of treatment indication was also observed for lumbar spine + unilateral hip (71.2%) compared to bilateral hips (61.1%) (p<0.001). The discrepancies in treatment appeared to be more evident in women when analyzed by gender distribution. Conclusion: Our finding supports the theory that evaluation of the bilateral hips with the lumbar spine seems to be more sensitive measure for identifying patients with an osteoporosis treatment indication. Furthermore, despite the well-known artifact in the lumbar spine, this site should not be excluded when determining the indication for OP treatment in elderly people. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Purpose. To use 3-dimensional sonography (3DUS) to measure contralateral lung volume and evaluate the potential of this measurement to predict neonatal outcome in isolated congenital diaphragmatic hernia (CDH). Methods. Between January 2002 and December 2004, the contralateral lung volumes of 39 fetuses with isolated CDH were measured via 3DUS using rotational multiplanar imaging. The observed/expected contralateral fetal lung volume ratios (o/eContFLVR) were compared with the lung/head ratio (LHR), observed/expected total fetal lung volume ratio (o/e-TotFLVR), and postnatal outcome. Results. Contralateral lung volumes are less reduced than total lung volumes in CDH. The bias and precision of 3DUS in estimating contralateral lung volumes were 0.99 cm(3) and 1.11 cm(3), respectively, with absolute limits of agreement ranging from -1.19 cm(3) to + 3.17 cm(3). The o/e-ContFLVR was significantly lower in neonatal death cases (median, 0.49 cm(3); range, 0.22-0.99 cm(3)) than in survival cases (median, 0.58 cm(3); range, 0.42-0.92 cm(3) [p < 0.011). Overall accuracy of the o/e-ContFLVR, o/e-TotFLVR, and LHR in predicting neonatal death were 67.7% (21/31), 80.7% (25/31), and 77.4% (24/31), respectively. Conclusion. Although o/e-ContFLVR can be precisely measured with 3DUS and can be used to predict neonatal death in CDH, it is less accurate than LHR and o/e-TotFLVR for that purpose. (C) 2007 Wiley Periodicals, Inc.
Resumo:
The magnitude Of functional impairment that may indicate the threshold between MCI and incipient Alzheimer`s disease (AD) has not been clearly defined. The objective was to examine the pattern of functional impairment in the continuum MCI-AD. Eighty-nine older adults (32 cognitively unimpaired, 31 MCI, and 26 AD patients) were examined with the Brazilian version of the Direct Assessment of Functional Status (DAFS-BR) at a University-based memory clinic. MCI patients were sub-divided according to the progression to AD upon follow-up, and had baseline cognitive, functional and biological variables analyzed. MCI patients displayed mild deficits in functional abilities, with intermediate scores as compared to controls and AD. The DAFS-BR items that differentiated MCI from controls involved the ability to deal with finances and shopping skills. At baseline, scores obtained by MCI patients who converted to AD were not significantly different from scores of nonconverters. The magnitude of functional deficits was associated with AD-like pathological findings in the CSF. In conclusion, MCI patients present with early functional changes in complex, instrumental abilities that require the integrity of memory and executive functions. The objective measurement of the functional state may help identify older adults with increased risk of developing dementia in the MCI-AD continuum. (JINS, 2010, 16, 297-305.)
Resumo:
Purpose: Several attempts to determine the transit time of a high dose rate (HDR) brachytherapy unit have been reported in the literature with controversial results. The determination of the source speed is necessary to accurately calculate the transient dose in brachytherapy treatments. In these studies, only the average speed of the source was measured as a parameter for transit dose calculation, which does not account for the realistic movement of the source, and is therefore inaccurate for numerical simulations. The purpose of this work is to report the implementation and technical design of an optical fiber based detector to directly measure the instantaneous speed profile of a (192)Ir source in a Nucletron HDR brachytherapy unit. Methods: To accomplish this task, we have developed a setup that uses the Cerenkov light induced in optical fibers as a detection signal for the radiation source moving inside the HDR catheter. As the (192)Ir source travels between two optical fibers with known distance, the threshold of the induced signals are used to extract the transit time and thus the velocity. The high resolution of the detector enables the measurement of the transit time at short separation distance of the fibers, providing the instantaneous speed. Results: Accurate and high resolution speed profiles of the 192Ir radiation source traveling from the safe to the end of the catheter and between dwell positions are presented. The maximum and minimum velocities of the source were found to be 52.0 +/- 1.0 and 17.3 +/- 1:2 cm/s. The authors demonstrate that the radiation source follows a uniformly accelerated linear motion with acceleration of vertical bar a vertical bar = 113 cm/s(2). In addition, the authors compare the average speed measured using the optical fiber detector to those obtained in the literature, showing deviation up to 265%. Conclusions: To the best of the authors` knowledge, the authors directly measured for the first time the instantaneous speed profile of a radiation source in a HDR brachytherapy unit traveling from the unit safe to the end of the catheter and between interdwell distances. The method is feasible and accurate to implement on quality assurance tests and provides a unique database for efficient computational simulations of the transient dose. (C) 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3483780]
Resumo:
The aim was to investigate inter-tester and intra-tester reliability and parallel reliability between a visual assessment method and a method using a pachymeter for locating the mid-point of the patella in determining the medial/lateral patella orientation. Fifteen asymptomatic subjects were assessed and the mid-point of the patella was determined by both methods on two separate occasions two weeks apart. Inter-tester reliability was obtained by ANOVA and by intraclass correlation coefficient (ICC); intra-tester reliability was obtained by a paired t-test and ICC; and parallel reliability was obtained by Pearson`s Correlation and ICC, for the measurement on the first and second evaluations. There was acceptable inter-tester agreement (p = 0.490) and reliability for the visual inspection (ICC = 0.747) and for the pachymeter (ICC = 0.716) at the second evaluation. The inter-tester reliability in the first evaluation was unacceptable (visual ICC = 0.604; pachymeter ICC = 0.612). Although there was statistical similarity between measurements for the first and second evaluations for all testers, intra-tester reliability was not acceptable for both methods: visual (examiner 1 ICC = 0.175; examiner 2 ICC = 0.189; examiner 3 ICC = 0.155) and pachymeter (examiner 1 ICC = 0.214; examiner 2 ICC = 0.246; examiner 3 ICC = 0.069). Parallel reliability gave a perfect correlation at the first evaluation (r=0.828; p<0.001) and at the second (r=0.756; p<0.001) and reliability was between acceptable and very good (ICC = [0.748-0.813]). Both visual and pachymeter methods provide reliable and similar medial/lateral patella orientation and are reliable between different examiners, but the results between the two assessments at 2 weeks` interval demonstrated an unacceptable reliability. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The dorsolateral prefrontal cortex (DLPFC) has been implicated in the pathophysiology of mental disorders. Previous region-of-interest MRI studies that attempted to delineate this region adopted various landmarks and measurement techniques, with inconsistent results. We developed a new region-of-interest measurement method to obtain morphometric data of this region from structural MRI scans, taking into account knowledge from cytoarchitectonic postmortem studies and the large inter-individual variability of this region. MRI scans of 10 subjects were obtained, and DLPFC tracing was performed in the coronal plane by two independent raters using the semi-automated software Brains2. The intra-class correlation coefficients between two independent raters were 0.94 for the left DLPFC and 0.93 for the right DLPFC. The mean +/- S.D. DLPFC volumes were 9.23 +/- 2.35 ml for the left hemisphere and 8.20 +/- 2.08 ml for the right hemisphere. Our proposed method has high inter-rater reliability and is easy to implement, permitting the standardized measurement of this region for clinical research applications. (C) 2009 Elsevier Ireland Ltd. All rights reserved.