67 resultados para maintenance of the genome
Resumo:
Medulloblastoma (MB) is the most common malignant brain tumor of children. To identify the genetic alterations in this tumor type, we searched for copy number alterations using high-density microarrays and sequenced all known protein-coding genes and microRNA genes using Sanger sequencing in a set of 22 MBs. We found that, on average, each tumor had 11 gene alterations, fewer by a factor of 5 to 10 than in the adult solid tumors that have been sequenced to date. In addition to alterations in the Hedgehog and Wnt pathways, our analysis led to the discovery of genes not previously known to be altered in MBs. Most notably, inactivating mutations of the histone-lysine N-methyltransferase genes MLL2 or MLL3 were identified in 16% of MB patients. These results demonstrate key differences between the genetic landscapes of adult and childhood cancers, highlight dysregulation of developmental pathways as an important mechanism underlying MBs, and identify a role for a specific type of histone methylation in human tumorigenesis.
Resumo:
Objective: To identify the genes presenting different expression in uterine leiomyomas after goserelin treatment. Design: Retrospective analyses of tissue obtained in a prospective clinical study. Setting: School of Medicine of the University of Sao Paulo. Patient(s): 30 nulliparous black women aged 20 to 45 years with symptoms of uterine leiomyoma, uterine volume over 300 mL, and surgical indications for myomectomy. Intervention(s): Fifteen patients were given a monthly dose of 3.6 mg of goserelin over 3 months before surgery (group A), and 15 patients underwent surgery without any previous treatment (group B). Five random samples from each group were analyzed using the microarray technique with the Affymetrix platform (GeneChip Rat Genome 230 2.0 Array). Main Outcome Measure(s): Quantification of transcript expression levels of uterine fibroids in patients treated or not treated with goserelin. Result(s): Of the total of 47,000 sequences that were analyzed, representing approximately 38,500 human genes already characterized, we found a differential expression of 174 genes. Of these, 70 were up-regulated (33 genes with known function) and 104 were down-regulated (65 genes with known function) in samples from group A (treated) when compared with group B (nontreated). Conclusion(s): The genic expression of uterine leiomyomas changes in women who have had goserelin treatment when compared with nontreated patients. (Fertil Steril (R) 2010; 94: 1072-7. (C) 2010 by American Society for Reproductive Medicine.)
Resumo:
The persistent nature of addiction has been associated with activity-induced plasticity of neurons within the striatum and nucleus accumbens (NAc). To identify the molecular processes leading to these adaptations, we performed Cre/loxP-mediated genetic ablations of two key regulators of gene expression in response to activity, the Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) and its postulated main target, the cAMP-responsive element binding protein (CREB). We found that acute cocaine-induced gene expression in the striatum was largely unaffected by the loss of CaMKIV. On the behavioral level, mice lacking CaMKIV in dopaminoceptive neurons displayed increased sensitivity to cocaine as evidenced by augmented expression of locomotor sensitization and enhanced conditioned place preference and reinstatement after extinction. However, the loss of CREB in the forebrain had no effect on either of these behaviors, even though it robustly blunted acute cocaine-induced transcription. To test the relevance of these observations for addiction in humans, we performed an association study of CAMK4 and CREB promoter polymorphisms with cocaine addiction in a large sample of addicts. We found that a single nucleotide polymorphism in the CAMK4 promoter was significantly associated with cocaine addiction, whereas variations in the CREB promoter regions did not correlate with drug abuse. These findings reveal a critical role for CaMKIV in the development and persistence of cocaine-induced behaviors, through mechanisms dissociated from acute effects on gene expression and CREB-dependent transcription.
Resumo:
Well-differentiated liposarcoma (WDLS) is one of the most common malignant mesenchymal tumors and dedifferentiated liposarcoma (DDLS) is a malignant tumor consisting of both WDLS and a transformed nonlipogenic sarcomatous component. Cytogenetically, WDLS is characterized by the presence of ring or giant rod chromosomes containing several amplified genes, including MDM2, TSPAN31 CDK4, and others mainly derived from chromosome bands 12q13-15. However, the 12q13-15 amplicon is large and discontinuous. The focus of this study was to identify novel critical genes that are consistently amplified in primary (nonrecurrent) WDLS and with potential relevance for future targeted therapy. Using a high-resolution (5.0 kb) ""single nucleotide polymorphism""/copy number variation microarray to screen the whole genome in a series of primary WDLS, two consistently amplified areas were found on chromosome 12: one region containing the MDM2 and CPM genes, and another region containing the FRS2 gene. Based on these findings, we further validated FRS2 amplification in both WDLS and DDLS. Fluorescence in situ hybridization confirmed FRS2 amplification in all WDLS and DDLS tested (n = 57). Real time PCR showed FRS2 mRNA transcriptional upregulation in WDLS (n = 19) and DDLS (n = 13) but not in lipoma (n = 5) and normal fat (n = 9). Immunoblotting revealed high expression levels of phospho-FRS2 at 1436 and slightly overexpression of total FRS2 protein in liposarcoma but not in normal fat or preadipocytes. Considering the critical role of FRS2 in mediating fibroblast growth factor receptor signaling, our findings indicate that FRS2 signaling should be further investigated as a potential therapeutic target for liposarcoma. (C) 2011 Wiley-Liss, Inc.
Resumo:
Aim: To provide new sustainable in vivo models of ventricular fibrillation in rabbits. Methods: New Zealand rabbits were submitted to anaesthesia and mechanical ventilation. after which ventricular fibrillation was induced through electrical stimulation (for 2 min at 100 Hz, with 2-ms pulses, 10 mA. and 10V) directly to the heart. To that end, the animals were divided into two groups: right ventricle (n = 11) and left ventricle (n = 11). In group right ventricle, the thoracic cavity was exposed, and a catheter was introduced into the right ventricle via the right jugular vein. in group left ventricle, the thorax remained closed, and the catheter was introduced into the left ventricle via the left common carotid artery (cervical access). Results: Sustained ventricular fibrillation was achieved in 100% of group right ventricle rabbits (n = 11 and in 82% of group left ventricle rabbits (n = 9). Conclusion: Both models proved appropriate for achieving sustained ventricular fibrillation. However, in view of the invasiveness of the procedure adopted in group right ventricle, the experimental conditions used in group left ventricle seemed more physiological and more effective in inducing sustained ventricular fibrillation. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: Recurrent 15q13.3 microdeletions were recently identified with identical proximal (BP4) and distal (BP5) breakpoints and associated with mild to moderate mental retardation and epilepsy. Methods: To assess further the clinical implications of this novel 15q13.3 microdeletion syndrome, 18 new probands with a deletion were molecularly and clinically characterised. In addition, we evaluated the characteristics of a family with a more proximal deletion between BP3 and BP4. Finally, four patients with a duplication in the BP3-BP4-BP5 region were included in this study to ascertain the clinical significance of duplications in this region. Results: The 15q13.3 microdeletion in our series was associated with a highly variable intra-and inter-familial phenotype. At least 11 of the 18 deletions identified were inherited. Moreover, 7 of 10 siblings from four different families also had this deletion: one had a mild developmental delay, four had only learning problems during childhood, but functioned well in daily life as adults, whereas the other two had no learning problems at all. In contrast to previous findings, seizures were not a common feature in our series (only 2 of 17 living probands). Three patients with deletions had cardiac defects and deletion of the KLF13 gene, located in the critical region, may contribute to these abnormalities. The limited data from the single family with the more proximal BP3-BP4 deletion suggest this deletion may have little clinical significance. Patients with duplications of the BP3-BP4-BP5 region did not share a recognisable phenotype, but psychiatric disease was noted in 2 of 4 patients. Conclusions: Overall, our findings broaden the phenotypic spectrum associated with 15q13.3 deletions and suggest that, in some individuals, deletion of 15q13.3 is not sufficient to cause disease. The existence of microdeletion syndromes, associated with an unpredictable and variable phenotypic outcome, will pose the clinician with diagnostic difficulties and challenge the commonly used paradigm in the diagnostic setting that aberrations inherited from a phenotypically normal parent are usually without clinical consequences.
Resumo:
In the present study, our aim was to investigate whether EBV DNA could be found in association with invasive and pre-invasive cervical cancer lesions. We hypothesize that EBV is not merely a commensal agent when present in malignant cervical lesions. DNA was extracted from cervical scrapings followed by nested PCR-based amplification. The patients were 66 women with high grade cervical intraepithelial neoplasia and 14 women with invasive cervical cancer. The control group consisted of 89 women with a normal Pap smear and colposcopy as well as a negative HPV DNA test. Analysis of our results, in conjunction with the work of other authors, leads us to propose that EBV is not merely a commensal agent when present in malignant cervical lesions. The presence of DNA from EBV is significantly associated with cervical cancer.
Resumo:
Silver-Russell syndrome (SRS) is characterized by severe intrauterine and postnatal growth retardation in association with a typical small triangular face and other variable features. Genetic and epigenetic disturbances are detected in about 50% of the patients. Most frequently, SRS is caused by altered gene expression on chromosome 11p15 due to hypomethylation of the telomeric imprinting center (ICR1) that is present in at least 40% of the patients. Maternally inherited duplications encompassing ICR1 and ICR2 domains at 11p15 were found in a few patients, and a microduplication restricted to ICR2 was described in a single SRS child. We report on a microduplication of the ICR2 domain encompassing the KCNQ1, KCNQ1OT1, and CDKN1C genes in a three-generation family: there were four instances of paternal transmissions of the microduplication from a single male uniformly resulting in normal offspring, and five maternal transmissions, via two clinically normal sisters, with all the children exhibiting SRS. This report provides confirmatory evidence that a microduplication restricted to the ICR2 domain results in SRS when maternally transmitted. (C) 2011 Wiley-Liss, Inc.
Resumo:
The aim of this study was to investigate whether the toxicity of saturated and polyunsaturated fatty acids (PUFA) on RINm5F cells is related to the phosphorylation state of Akt, ERK and PKC delta. The regulation of these kinases was compared in three experimental designs: (a) 4 h-exposure, (b) 4 h-exposure and a subsequent withdrawn of the FA for a 20 h period and (c) 24 h-exposure. Saturated and PUFA were toxic to RINm5F cells even at low concentrations. Also, evidence is provided for a late (i.e. the effect only appeared hours after the treatment) and a persistent regulation (i.e. maintenance of the effect for several hours) of Akt, ERK and PKC delta phosphorylation by the FA. Late activation of PKC delta seems important for palmitate cytotoxicity. Persistent activation of the survival proteins Akt and ERK by stearate, oleate and arachidonate might play an important role to prevent the toxic effect of posterior PKC delta activation. The results shown may explain why a short-period exposure to FA is not enough to induce cytotoxicity in pancreatic beta-cells, since survival pathways are activated. Besides, when this activation is persistent, it may overcome a posterior induction of death pathways. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In highly eusocial insects, such as the honey bee, Apis mellifera, the reproductive bias has become embedded in morphological caste differences. These are most expressively denoted in ovary size, with adult queens having large ovaries consisting of 150-200 ovarioles each, while workers typically have only 1-20 ovarioles per ovary. This morphological differentiation is a result of hormonal signals triggered by the diet change in the third larval instar, which eventually generate caste-specific gene expression patterns. To reveal these we produced differential gene expression libraries by Representational Difference Analysis (RDA) for queen and worker ovaries in a developmental stage when cell death is a prominent feature in the ovarioles of workers, whereas all ovarioles are maintained and extend in length in queens. In the queen library, 48% of the gene set represented homologs of known Drosophila genes, whereas in the worker ovary, the largest set (59%) were ESTs evidencing novel genes, not even computationally predicted in the honey bee genome. Differential expression was confirmed by quantitative RT-PCR for a selected gene set, denoting major differences for two queen and two worker library genes. These included two unpredicted genes located in chromosome 11 (Group11.35 and Group11.31, respectively) possibly representing long non-coding RNAs. Being candidates as modulators of ovary development, their expression and functional analysis should be a focal point for future studies. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Purpose To compare the process of myelination in the developing optic nerve (ON) of anaemic rats with the subsequent recovery after being fed an iron-recovery diet. Methods In this study, the morphometrical parameters in the ON were assessed by electron microscopy in Wistar rats that were on an iron-deficient diet for 32 days or for 21 days followed by 10 days on an iron-recovery diet. Qualitative and quantitative analyses were performed using representative electron ultramicrographs. Data were analysed by one-way analysis of variance (ANOVA). When differences were detected, comparisons were made using Tukey`s post hoc test (P<0.05 was considered to be significant). Results Qualitative analysis of the ONs in anaemic and recovered animals showed a higher rate of deformed axons and increased lamellar separation in the myelin sheath when compared with the respective control group. The ON of the anaemic group showed a reduced mean density of myelinated fibres when compared with the control group. The fibre area ratio, axon area ratio, and myelin area ratio of large axons/small axons in the ONs of the control group showed the highest values for the myelin areas, axon areas, and total fibre areas. The control group showed a significantly higher myelin sheath thickness when compared with the anaemic and recovered groups. Conclusions Our data indicate that iron is necessary for maintenance of the ON cell structure, and that morphological damage from iron deficiency is not easily reverted by iron repletion. Eye (2010) 24, 901-908; doi:10.1038/eye.2009.205; published online 14 August 2009
Resumo:
Cytogenetic studies of choroid plexus tumors, particularly for atypical choroid plexus papillomas, have been rarely described. In the present report, the cytogenetic investigation of an atypical choroid plexus papilloma occurring at the posterior fossa of a 16-year-old male is described. Comparative genome hybridization analysis demonstrated gains of genetic material from almost all chromosomes. Chromosome losses involved 19p, regional losses at chromosome X and loss of chromosome Y. The presence of polyploid cells was confirmed by fluorescence in situ hybridization analysis with probes directed to centromeric regions. Furthermore, the microscopic analysis of cultures showed nuclear buds, nucleoplasmic bridges, and micronuclei in 23% of tumor cells suggesting the presence of complex chromosomal abnormalities. Previous cytogenetic studies on choroid plexus papillomas showed either normal, hypodiploid or hyperdiploid karyotypes. To the best of our knowledge, this is the first report of polyploidy in choroid plexus papilloma of intermediate malignancy grade. Although the mechanisms beneath such genome duplication remain to be elucidated, the observed abnormal nuclear shapes indicate constant restructuring of the tumor`s genome and deserves further investigation.
Resumo:
In the present study, the participation of the Na(v)1.8 sodium channel was investigated in the development of the peripheral pro-nociceptive state induced by daily intraplantar injections of PGE(2) in rats and its regulation in vivo by protein kinase A (PKA) and protein kinase C epsilon (PKC epsilon) as well. In the prostaglandin E(2) (PGE(2))-induced persistent hypernociception, the Na(v)1.8 mRNA in the dorsal root ganglia (DRG) was up-regulated. The local treatment with dipyrone abolished this persistent hypernociception but did not alter the Na(v)1.8 mRNA level in the DRG. Daily intrathecal administrations of antisense Na(v)1.8 decreased the Na(v)1.8 mRNA in the DRG and reduced ongoing persistent hypernociception. once the persistent hypernociception had been abolished by dipyrone, but not by Na(v)1.8 antisense treatment, a small dose of PGE(2) restored the hypernociceptive plateau. These data show that, after a period of recurring inflammatory stimuli, an intense and prolonged nociceptive response is elicited by a minimum inflammatory stimulus and that this pro-nociceptive state depends on Na(v)1.8 mRNA up-regulation in the DRG. in addition, during the persistent hypernociceptive state, the PKA and PKC epsilon expression and activity in the DRG are up-regulated and the administration of the PKA and PKC epsilon inhibitors reduce the hypernociception as well as the Na(v)1.8 mRNA level. In the present study, we demonstrated that the functional regulation of the Na(v)1.8 mRNA by PKA and PKC epsilon in the primary sensory neuron is important for the development of the peripheral pro-nociceptive state induced by repetitive inflammatory stimuli and for the maintenance of the behavioral persistent hypernociception. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Background and purpose: Protein kinase (PK) A and the epsilon isoform of PKC (PKC epsilon) are involved in the development of hypernociception (increased sensitivity to noxious or innocuous stimuli) in several animal models of acute and persistent inflammatory pain. The present study evaluated the contribution of PKA and PKC epsilon to the development of prostaglandin E(2) (PGE(2))-induced mechanical hypernociception. Experimental approach: Prostaglandin E(2)-induced mechanical hypernociception was assessed by constant pressure rat paw test. The activation of PKA or PKC epsilon was evaluated by radioactive enzymic assay in the dorsal root ganglia (DRG) of sensory neurons from the hind paws. Key results: Hypernociception induced by PGE(2) (100 ng) by intraplantar (i.pl.) injection, was reduced by i.pl. treatment with inhibitors of PKA [A-kinase-anchoring protein St-Ht31 inhibitor peptide (AKAPI)], PKC epsilon (PKC epsilon I) or adenylyl cyclase. PKA activity was essential in the early phase of the induction of hypernociception, whereas PKC activity was involved in the maintenance of the later phase of hypernociception. In the DRG (L4-L5), activity of PKA increased at 30 min after injection of PGE(2) but PKC activity increased only after 180 min. Moreover, i.pl. injection of the catalytic subunit of PKA induced hypernociception which was markedly reduced by pretreatment with an inhibitor of PKC epsilon, while the hypernociception induced by paw injection of PKC epsilon agonist was not affected by an inhibitor of PKA (AKAPI). Conclusions and implications: Taken together, these findings are consistent with the suggestion that PKA activates PKC epsilon, which is a novel mechanism of interaction between these kinases during the development of PGE(2)-induced mechanical hypernociception.
Resumo:
The Woronin body, a septal pore-associated organelle specific to filamentous ascomycetes, is crucial for preventing cytoplasmic bleeding after hyphal injury. In this study, we show that T1hex-1 transcript and a variant splicing T2hex-1 transcript are up-regulated at alkaline pH. We also show that both hex-1 transcripts are overexpressed in the preg(c), nuc-1(RIP), and pacC(ko) mutant strains of Neurospora crassa grown under conditions of phosphate shortage at alkaline pH, suggesting that hex-1 transcription may be coregulated by these genes. In addition, we present evidence that N. crassa PacC also has metabolic functions at acidic pH. (C) 2008 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved.