74 resultados para low energy electron diffraction
Resumo:
We have analyzed a large set of alpha + alpha elastic scattering data for bombarding energies ranging from 0.6 to 29.5 MeV. Because of the complete lack of open reaction channels, the optical interaction at these energies must have a vanishing imaginary part. Thus, this system is particularly important because the corresponding elastic scattering cross sections are very sensitive to the real part of the interaction. The data were analyzed in the context of the velocity-dependent Sao Paulo potential, which is a successful theoretical model for the description of heavy-ion reactions from sub-barrier to intermediate energies. We have verified that, even in this low-energy region, the velocity dependence of the model is quite important for describing the data of the alpha + alpha system.
Resumo:
In this work, we study the emission of tensor-type gravitational degrees of freedom from a higher-dimensional, simply rotating black hole in the bulk. The decoupled radial part of the corresponding field equation is first solved analytically in the limit of low-energy emitted particles and low-angular momentum of the black hole in order to derive the absorption probability. Both the angular and radial equations are then solved numerically, and the comparison of the analytical and numerical results shows a very good agreement in the low and intermediate energy regimes. By using our exact, numerical results we compute the energy and angular-momentum emission rates and their dependence on the spacetime parameters such as the number of additional spacelike dimensions and the angular momentum of the black hole. Particular care is given to the convergence of our results in terms of the number of modes taken into account in the calculation and the multiplicity of graviton tensor modes that correspond to the same angular-momentum numbers.
Resumo:
We present an extensive study of the oxyborate material Co(5)Ti(O(2)BO(3))(2) using x-ray, magnetic, and thermodynamic measurements. This material belongs to a family of oxyborates known as ludwigites which presents low-dimensional subunits in the form of three leg ladders in its structure. Differently from previously investigated ludwigites the present material does not show long-range magnetic order although it goes into a spin-glass state at low temperatures. The different techniques employed in this paper allow for a characterization of the structure, the nature of the low-energy excitations and the magnetic anisotropy of this system. Its unique magnetic behavior is discussed and compared with those of other magnetic ludwigites.
Resumo:
We revisit the mechanism for violating the weak cosmic-censorship conjecture (WCCC) by overspinning a nearly-extreme charged black hole. The mechanism consists of an incoming massless neutral scalar particle, with low energy and large angular momentum, tunneling into the hole. We investigate the effect of the large angular momentum of the incoming particle on the background geometry and address recent claims that such a backreaction would invalidate the mechanism. We show that the large angular momentum of the incident particle does not constitute an obvious impediment to the success of the overspinning quantum mechanism, although the induced backreaction turns out to be essential to restoring the validity of the WCCC in the classical regime. These results seem to endorse the view that the ""cosmic censor"" may be oblivious to processes involving quantum effects.
Resumo:
Banana flour obtained from unripe banana (Musa acuminata, var. Nanico) under specific drying conditions was evaluated regarding its chemical composition and nutritional value. Results are expressed in dry weight (dw). The unripe banana flour (UBF) presented a high amount of total dietary fiber (DF) (56.24 g/100 g), which consisted of resistant starch (RS) (48.99 g/100 g), fructans (0.05 g/100 g) and DF without RS or fructans (7.2 g/100 g). The contents of available starch (AS) (27.78 g/100 g) and soluble sugars (1.81 g/100 g) were low. The main phytosterols found were campesterol (4.1 mg/100 g), stigmasterol (2.5 mg/100 g) and beta-sitosterol (6.2 mg/100 g). The total polyphenol content was 50.65 mg GAE/100 g. Antioxidant activity, by the FRAP and ORAC methods, was moderated, being 358.67 and 261.00 mu mol of Trolox equivalent/100 g, respectively. The content of Zn, Ca and Fe and mineral dialyzability were low. The procedure used to obtain UBF resulted in the recovery of undamaged starch granules and in a low-energy product (597 kJ/100 g).
Resumo:
The application of nanoemulsions is due to have good stability, uniform spreading and enhance active penetration upon skin. Nanometer emulsions can be obtained by low-energy emulsification method. The required hydrophilic and lipophilic balance indicates the better balance of emulsifier for optimum system emulsification. Emulsion stability is evidently controlled for the properties of the adsorbed layer formed in the surface of its globules, know as potential zeta. The aim of this work was to evaluate the oil/water nanoemulsion of formulation obtained after 15 years of preparation. The results suggested that the nanoemulsion have performed stability for many years.
Resumo:
A 14-year-old patient had a low-energy facial blunt trauma that evolved to right facial paralysis caused by parotid hematoma with parotid salivary gland lesion. Computed tomography and angiography demonstrated intraparotid collection without pseudoaneurysm and without radiologic signs of fracture in the face. The patient was treated with serial punctures for hematoma deflation, resolving with regression and complete remission of facial paralysis, with no late sequela. The authors discuss the relationship between facial nerve traumatic injuries associated or not with the presence of facial fractures, emphasizing the importance of early recognition and appropriate treatment of such cases.
Resumo:
Objective: We tested the hypothesis that combined 660 and 890 nm LED phototherapy will promote healing of diabetic ulcers that failed to respond to other forms of treatment. Research Design and Methods: A double-blind randomized placebo controlled design was used to study 23 diabetic leg ulcers in two groups of 14 patients. Group one ulcers were cleaned, dressed with 1% silver sulfadiazine cream and treated with ""placebo"" phototherapy (<1.0 J cm(-2)) twice per week, using a Dynatron Solaris 705 (R) device. Group two ulcers were treated similarly but received 3 J cm(-2) dose. Results: At each of 15,30,45,60,75, and 90 days of healing, mean ulcer granulation and healing rates were significantly higher for group two than the ""placebo"" group (P < 0.02). While ""placebo"" treated ulcers worsened during the initial 30 days, group two ulcers healed rapidly; achieving 56% more granulation and 79.2% faster healing by day 30, and maintaining similarly higher rates of granulation and healing over the ""placebo"" group all through. By day 90, 58.3% of group two ulcers had healed fully and 75% had achieved 90-100% healing. In contrast, only one ""placebo"" treated ulcer healed fully by day 90; no other ulcer attained >90% healing. Conclusion: Combined 660 and 890 nm light promotes rapid granulation and healing of diabetic ulcers that failed to respond to other forms of treatment. Lasers Surg. Med. 41:433-441, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
Alternative treatment for recurrent labial infection by herpes simplex virus (HSV) have been considered. The aim of this study was to evaluate the effectiveness of laser phototherapy in prevention and reduction of severity of labial manifestations of herpes labialis virus. Seventy-one patients, divided into experimental (n = 41) and control (n = 30) groups were followed up for 16 months. Patients in the control group were treated topically with aciclovir and patients in the experimental group were subjected to laser phototherapy (one session per week, 10 weeks): 780 nm, 60 mW, 3.0 J/cm(2) or 4.5 J/cm(2) on healthy (no HSV-1 infection) and affected (with HSV-1 infection) tissues. Patients in the experimental group presented a significant decrease in dimension of herpes labialis lesions (P = 0.013) and inflammatory edema (P = 0.031). The reduction in pain level (P = 0.051) and monthly recurrences (P = 0.076) did not reach statistical significance. This study represents an in vivo indication that this treatment should be further considered as an effective alternative to therapeutic regimens for herpes labialis lesions.
Resumo:
in this paper a study of calcining conditions on the microstructural features of sugar cane waste ash (SCWA) is carried out. For this purpose, some microparticles (< 90 mu m) of sugar cane straw ash and sugar cane bagasse ash of samples calcined at 800 degrees C and 1000 are studied by combining the bright field and the dark field images with the electron diffraction patterns in the transmission electron microscopy (TEM). It is appreciated that the morphology and texture of these microparticles change when silicon or calcium are present. Furthermore, it is observed that iron oxide (magnetite Fe(3)O(4)) is located in the calcium-rich particles. The microstructural information is correlated with the results of a kinetic-diffusive model that allows the computing of the kinetic parameters of the pozzolanic reaction (mainly the reaction rate constant). The results show that the sugar cane wastes ash calcined at 800 and 1000 degrees C have properties indicative of high pozzolanic activity. The X-ray diffraction patterns, the TEM images and the pozzolanic activity tests show the influence of different factors on the activation of these ashes. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A full description of the 5.5-yr low excitation events in. Carinae is presented. We show that they are not as simple and brief as previously thought, but a combination of two components. The first, the slow variation component, is revealed by slow changes in the ionization level of circumstellar matter across the whole cycle and is caused by gradual changes in the wind wind collision shock-cone orientation, angular opening and gaseous content. The second, the collapse component, is restricted to around the minimum, and is due to a temporary global collapse of the wind-wind collision shock. High-energy photons (E > 16 eV) from the companion star are strongly shielded, leaving the Weigelt objects at low-ionization state for more than six months. High-energy phenomena are sensitive only to the collapse, low energy only to the slow variation and intermediate energies to both components. Simple eclipses and mechanisms effective only near periastron (e. g. shell ejection or accretion on to the secondary star) cannot account for the whole 5.5-yr cycle. We find anti-correlated changes in the intensity and the radial velocity of P Cygni absorption profiles in Fe II lambda 6455 and He I lambda 7065 lines, indicating that the former is associated to the primary and the latter to the secondary star. We present a set of light curves representative of the whole spectrum, useful for monitoring the next event (2009 January 11).
Resumo:
Strangelets (hypothetical stable lumps of strange quarkmatter) of astrophysical origin may be ultimately detected in specific cosmic ray experiments. The initial mass distribution resulting from the possible astrophysical production sites would be subject to reprocessing in the interstellar medium and in the earth`s atmosphere. In order to get a better understanding of the claims for the detection of this still hypothetic state of hadronic matter, we present a study of strangelet-nucleus interactions including several physical processes of interest (abrasion, fusion, fission, excitation and de-excitation of the strangelets), to address the fate of the baryon number along the strangelet path. It is shown that, although fusion may be important for low-energy strangelets in the interstellar medium (thus increasing the initial baryon number A), in the earth`s atmosphere the loss of the baryon number should be the dominant process. The consequences of these findings are briefly addressed.
Resumo:
Topological interactions will be generated in theories with compact extra dimensions where fermionic chiral zero modes have different localizations. This is the case in many warped extra dimension models where the right-handed top quark is typically localized away from the left-handed one. Using deconstruction techniques, we study the topological interactions in these models. These interactions appear as trilinear and quadrilinear gauge boson couplings in low energy effective theories with three or more sites, as well as in the continuum limit. We derive the form of these interactions for various cases, including examples of Abelian, non-Abelian and product gauge groups of phenomenological interest. The topological interactions provide a window into the more fundamental aspects of these theories and could result in unique signatures at the Large Hadron Collider, some of which we explore.
Resumo:
A new formulation of potential scattering in quantum mechanics is developed using a close structural analogy between partial waves and the classical dynamics of many non-interacting fields. Using a canonical formalism we find nonlinear first-order differential equations for the low-energy scattering parameters such as scattering length and effective range. They significantly simplify typical calculations, as we illustrate for atom-atom and neutron-nucleus scattering systems. A generalization to charged particle scattering is also possible.
Resumo:
We consider the formal non-relativistic limit (nrl) of the : phi(4):(s+1) relativistic quantum field theory (rqft), where s is the space dimension. Following the work of R. Jackiw [R. Jackiw, in: A. Ali, P. Hood-bhoy (Eds.), Beg Memorial Volume, World Scientific, Singapore, 1991], we show that, for s = 2 and a given value of the ultraviolet cutoff K, there are two ways to perform the nrl: (i) fixing the renormalized mass m(2) equal to the bare mass m(0)(2); (ii) keeping the renormalized mass fixed and different from the bare mass mo. In the (infinite-volume) two-particle sector the scattering amplitude tends to zero as K -> infinity in case (i) and, in case (ii), there is a bound state, indicating that the interaction potential is attractive. As a consequence, stability of matter fails for our boson system. We discuss why both alternatives do not reproduce the low-energy behaviour of the full rqft. The singular nature of the nrl is also nicely illustrated for s = 1 by a rigorous stability/instability result of a different nature. (C) 2007 Elsevier Inc. All rights reserved.