140 resultados para leaf nutrient content
Resumo:
Human activities that modify land cover can alter the structure and biogeochemistry of small streams but these effects are poorly known over large regions of the humid tropics where rates of forest clearing are high. We examined how conversion of Amazon lowland tropical forest to cattle pasture influenced the physical and chemical structure, organic matter stocks and N cycling of small streams. We combined a regional ground survey of small streams with an intensive study of nutrient cycling using (15)N additions in three representative streams: a second-order forest stream, a second-order pasture stream and a third-order pasture stream. These three streams were within several km of each other and on similar soils. Replacement of forest with pasture decreased stream habitat complexity by changing streams from run and pool channels with forest leaf detritus (50% cover) to grass-filled (63% cover) channel with runs of slow-moving water. In the survey, pasture streams consistently had lower concentrations of dissolved oxygen and nitrate (NO(3) (-)) compared with similar-sized forest streams. Stable isotope additions revealed that second-order pasture stream had a shorter NH(4) (+) uptake length, higher uptake rates into organic matter components and a shorter (15)NH(4) (+) residence time than the second-order forest stream or the third-order pasture stream. Nitrification was significant in the forest stream (19% of the added (15)NH(4) (+)) but not in the second-order pasture (0%) or third-order (6%) pasture stream. The forest stream retained 7% of added (15)N in organic matter compartments and exported 53% ((15)NH(4) (+) = 34%; (15)NO(3) (-) = 19%). In contrast, the second-order pasture stream retained 75% of added (15)N, predominantly in grasses (69%) and exported only 4% as (15)NH(4) (+). The fate of tracer (15)N in the third-order pasture stream more closely resembled that in the forest stream, with 5% of added N retained and 26% exported ((15)NH(4) (+) = 9%; (15)NO(3) (-) = 6%). These findings indicate that the widespread infilling by grass in small streams in areas deforested for pasture greatly increases the retention of inorganic N in the first- and second-order streams, which make up roughly three-fourths of total stream channel length in Amazon basin watersheds. The importance of this phenomenon and its effect on N transport to larger rivers across the larger areas of the Amazon Basin will depend on better evaluation of both the extent and the scale at which stream infilling by grass occurs, but our analysis suggests the phenomenon is widespread.
Resumo:
1. Little is known about the role of deep roots in the nutrition of forest trees and their ability to provide a safety-net service taking up nutrients leached from the topsoil. 2. To address this issue, we studied the potential uptake of N, K and Ca by Eucalyptus grandis trees (6 years of age - 25 m mean height), in Brazil, as a function of soil depth, texture and water content. We injected NO(3)(-)- (15)N, Rb(+) (analogue of K(+)) and Sr(2+) (analogue of Ca(2+)) tracers simultaneously in a solution through plastic tubes at 10, 50, 150 and 300 cm in depth in a sandy and a clayey Ferralsol soil. A complete randomized design was set up with three replicates of paired trees per injection depth and soil type. Recently expanded leaves were sampled at various times after tracer injection in the summer, and the experiment was repeated in the winter. Soil water contents were continuously monitored at the different depths in the two soils. 3. Determination of foliar Rb and Sr concentrations and (15)N atom % made it possible to estimate the relative uptake potential (RUP) of tracer injections from the four soil depths and the specific RUP (SRUP), defined as RUP, per unit of fine root length density in the corresponding soil layer. 4. The highest tracer uptake rates were found in the topsoil, but contrasting RUP distributions were observed for the three tracers. Whilst the RUP was higher for NO(3)(-)- (15)N than for Rb(+) and Sr(2+) in the upper 50 cm of soil, the highest SRUP values for Sr(2+) and Rb(+) were found at a depth of 300 cm in the sandy soil, as well as in the clayey soil when gravitational solutions reached that depth. 5. Our results suggest that the fine roots of E. grandis trees exhibit contrasting potential uptake rates with depth depending on the nutrient. This functional specialization of roots might contribute to the high growth rates of E. grandis trees, efficiently providing the large amounts of nutrients required throughout the development of these fast-growing plantations.
Resumo:
Upland rice plants, cultivar `IAC 202,` were grown in nutrient solution until full tillering. Treatments consisted of ammonium nitrate (AN) or urea (UR) as nitrogen (N) source plus molybdenum (Mo) and/or nickel (Ni): AN + Mo + Ni, AN + Mo - Ni, AN - Mo + Ni, UR + Mo + Ni, UR + Mo - Ni, and UR - Mo + Ni. The experiment was carried out to better understand the effect of these treatments on dry-matter yield, chlorophyll, net photosynthesis rate, nitrate (NO3 --N), total N, in vitro activities of urease and nitrate reductase (NR), and Mo and Ni concentrations. In UR-grown plants, Mo and Ni addition increased yield of dry matter. Regardless of the N source, chlorophyll concentration and net photosynthesis rate were reduced when Mo or Ni were omitted, although not always significantly. The omission of either Mo or Ni led to a decrease in urease activity, independent of N source. Nitrate reductase activity increased in nutrient solutions without Mo, although NO3 --N increased. There was not a consistent variation in total N concentration. Molybdenum and Ni concentration in roots and shoots were influenced by their supply in the nutrient solution. Molybdenum concentration was not influenced by N sources, whereas Ni content in both root and shoots was greater in ammonium nitrate-grown plants. In conclusion, it can be hypothesized that there is a relationship between Mo and Ni acting on photosynthesis, although is an indirect one. This is the first evidence for a beneficial effect of Mo and Ni interaction on plant growth.
Resumo:
The metrological principles of neutron activation analysis are discussed. It has been demonstrated that this method can provide elemental amount of substance with values fully traceable to the SI. The method has been used by several laboratories worldwide in a number of CCQM key comparisons - interlaboratory comparison tests at the highest metrological level - supplying results equivalent to values from other methods for elemental or isotopic analysis in complex samples without the need to perform chemical destruction and dissolution of these samples. The CCOM accepted therefore in April 2007 the claim that neutron activation analysis should have the similar status as the methods originally listed by the CCOM as `primary methods of measurement`. Analytical characteristics and scope of application are given.
Resumo:
Resuspended soil and other airborne particles adhered to the leaf surface affect the chemical composition of the plant. A well-defined cleaning procedure is necessary to avoid this problem, providing a correct assessment of the inherent chemical composition of bromeliads. To evaluate the influence of a washing procedure, INAA was applied for determining chemical elements in the leaves of bromeliads from Vriesea carinata species, both non-washed and washed with Alconox, EDTA and bi-distilled water. Br, Ce, Hg, La, Sc, Se, Sm and Th showed higher mass fractions in non-washed leaves. The washing procedure removed the exogenous material without leaching chemical elements from inside the tissues.
Resumo:
The accumulation of chemical elements in biological compartments is one of the strategies of tropical species to adapt to a low-nutrient soil. This study focuses on the Atlantic Forest because of its eco-environmental importance as a natural reservoir of chemical elements. About 20 elements were determined by INAA in leaf, soil, litter and epiphyte compartments. There was no seasonality for chemical element concentrations in leaves, which probably indicated the maintainance of chemical elements in this compartment. Considering the estimated quantities, past deforestation events could have released large amounts of chemical elements to the environment.
Resumo:
Many different species of Bromeliaceae are endangered and their conservation requires specific knowledge of their growth habits and propagation. In vitro culture of bromeliads is an important method for efficient clonal propagation and ill vitro seed g,germination can be used to maintain genetic variability. The present work aims to evaluate the in vitro growth and nutrient concentration in leaves of the epiphyte bromeliads Vriesea friburguensis Mez, Vriesea hieroglyphica (Carriere) E. Morren, and Vriesea unilateralis Mez, which exhibit slow rates of growth in vivo and in vitro. Initially, we compared the endogenous mineral composition of bromeliad plantlets grown in half-strength Murashige and Skoog (MS) medium and the mineral composition considered adequate in the literature. This approach suggested that calcium (Ca) is a critical nutrient and this was considered for new media formulation. Three new culture media were defined in which the main changes to half-strength MS medium were an increase in Ca, magnesium, sulfur, copper, and chloride and a decrease in iron, maintaining the nitrate: ammonium rate at approximate to 2:1. The main difference among the three new media formulated was Ca concentration, which varied from 1.5 mm in half-strength MS to 3.0, 6.0, and 12 mm in M2, M3, and M4 media, respectively. Consistently, all three species exhibited significantly higher fresh and dry weight on M4, the newly defined medium with the highest level of Ca (12 mm). Leaf nitrogen, potassium, zinc, magnesium and boron concentrations increased as Ca concentration in the medium increased from 1.5 to 12 mm.
Resumo:
The study and understanding of alterations taking place during the micropropagation process can provide valuable information about this technology. The objective of this work was to evaluate the anatomical modifications in leaves of micropropagated banana (Musa spp.) plants during their adaptation to ex vitro conditions. Aseptic axillary shoots of `Preciosa` cultivar (AAAB) were rooted for 24 days in MS medium containing NAA (1mg.l(-1)) and agar (6g.l(-1)), and acclimatized for 120 days. The treatments consisted of leaves at different stages of development: T1 - leaves from plants at the end of in vitro rooting phase, T2 persistent leaves from plants after 30 days of acclimatization, T3 - new leaves from plants after 30 days of acclimatization (transition leaves). T4 - transition leaves from plants after 60 days, T5 - new leaves from plants after 60 days of acclimatization, and T6 - new leaves from plants after 120 days of acclimatization. A higher degree of differentiation and, thereby, better adaptation took place in leaves from leaf primordial differentiated in ex vitro conditions. The acclimatization phase is crucial for a greater thickness and differentiation of spongy and palisade parenchyma, and to correct the modifications of plants developed in vitro. The study of leaf anatomy provides a better understanding of alterations occurring in micropropagated banana plants.
Resumo:
Seed phytate and protein content in beans depending on the application of basalt powder. The content of phytate in the grains is correlated with the supply of phosphorus to the plant, but there is a lack of knowledge as to possible effect of slower availability of nutrients in the soil. The objectives of this study were to assess the effect of rock powder, alone or combined with cattle manure, on the productivity, levels of phosphorus, protein and phytate content in beans. The experiment was carried out in a randomized blocks design, with four replications. The treatments were control (limestone, granite and natural phosphate); conventional fertilization; powder basalt (2.5, 5.0, 10.0 and 20.0 ton. ha(-1)); cattle manure, and doses of powder basalt with cattle manure. In the treatment with conventional fertilizer, the total phosphorus content in grain was higher than the control, but the application of powder of basalt did not show a difference significant. Increase in the doses of basalt powder increased the phosphorus content, but phytate content remained constant. Basalt powder proved to be an alternative to maintain low levels of phosphorus in the form of phytate in the grains.
Resumo:
Introduction: Internet users are increasingly using the worldwide web to search for information relating to their health. This situation makes it necessary to create specialized tools capable of supporting users in their searches. Objective: To apply and compare strategies that were developed to investigate the use of the Portuguese version of Medical Subject Headings (MeSH) for constructing an automated classifier for Brazilian Portuguese-language web-based content within or outside of the field of healthcare, focusing on the lay public. Methods: 3658 Brazilian web pages were used to train the classifier and 606 Brazilian web pages were used to validate it. The strategies proposed were constructed using content-based vector methods for text classification, such that Naive Bayes was used for the task of classifying vector patterns with characteristics obtained through the proposed strategies. Results: A strategy named InDeCS was developed specifically to adapt MeSH for the problem that was put forward. This approach achieved better accuracy for this pattern classification task (0.94 sensitivity, specificity and area under the ROC curve). Conclusions: Because of the significant results achieved by InDeCS, this tool has been successfully applied to the Brazilian healthcare search portal known as Busca Saude. Furthermore, it could be shown that MeSH presents important results when used for the task of classifying web-based content focusing on the lay public. It was also possible to show from this study that MeSH was able to map out mutable non-deterministic characteristics of the web. (c) 2010 Elsevier Inc. All rights reserved.
Resumo:
Superficial bottom samples were collected near diffusers of domestic sewage submarine outfalls at Araca and Saco da Capela, Sao Sebastiao Channel, Brazil. The goal of this study was to investigate the distribution and composition of live benthic foraminifera assemblages and integrate the results obtained with geochemical analyses to assess human-induced changes. According to the results obtained no environmental stress was observed near the Saco da Capela submarine outfall diffusers. The foraminifera assemblage is characterised by species typical of highly hydrodynamic environments, with well-oxygenated bottom waters and low nutrient contents. In contrast, near Araca submarine outfall, organic enrichment was denoted by high phosphorus, sulphur and, to a lesser extent, total organic carbon content. Harmful influences on foraminifera could be identified by low richness and specific diversity, as well as the predominance of detritivore feeder species, which are associated with higher organic matter flux and low oxygen in the interstitial pore water. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Chemithermomechanical (CTM) processing was used to pretreat sugarcane bagasse with the aim of increasing cell wall accessibility to hydrolytic enzymes. Yields of the pretreated samples were in the range of 75-94%. Disk refining and alkaline-CTM and alkaline/sulfite-CTM pretreatments yielded pretreated materials with 21.7, 17.8, and 15.3% of lignin, respectively. Hemicellulose content was also decreased to some extent. Fibers of the pretreated materials presented some external fibrillation, fiber curling, increased swelling, and high water retention capacity. Cellulose conversion of the alkaline-CTM- and alkaline/sulfite-CTM-pretreated samples reached 50 and 85%, respectively, after 96 h of enzymatic hydrolysis. Two samples with low initial lignin content were also evaluated after the mildest alkaline-CTM pretreatment. One sample was a partially delignified mill-processed bagasse. The other was a sugarcane hybrid selected in a breeding program. Samples with lower initial lignin content were hydrolyzed considerably faster in the first 24 h of enzymatic digestion. For example, enzymatic hydrolysis of the sample with the lowest initial lignin content (14.2%) reached 64% cellulose conversion after only 24 h of hydrolysis when compared with the 30% observed for the mill-processed bagasse containing an initial lignin content of 24.4%. (C) 2011 American Institute of Chemical Engineers Biotechnol. Prog., 27: 395-401, 2011
Resumo:
High solids content film-forming poly[styrene-co-(n-butyl acrylate)] [poly(Sty-co-BuA)] latexes armored with Laponite clay platelets have been synthesized by soap-free emulsion copolymerization of styrene and n-butyl acrylate. The polymerizations were performed in batch in the presence of Laponite and a methyl ether acrylateterminated poly(ethylene glycol) macromonomer in order to promote polymer/clay association. The overall polymerization kinetics showed a pronounced effect of clay on nucleation and stabilization of the latex particles. Cryo-transmission electron microscopy observation confirmed the armored morphology and indicated that the majority of Laponite platelets were located at the particle surface. The resulting nanostructured films displayed enhanced mechanical properties.
Resumo:
The effect of alumina content on the mechanical strength of electrical porcelain manufactured by green machining of isostatically pressed blanks was examined with a view to attaining optimal mechanical properties at low sintering temperatures. Porcelain compositions were formulated with four different alumina contents, maintaining the same proportion of the other materials (kaolin, clay and feldspar). Test specimens were isostatically pressed at 70 MPa and machined at high speed into cylindrical test specimens using controlled machining parameters. These specimens were sintered at several temperatures to determine the optimal sintering temperature for each composition, after which their mechanical properties were analyzed by the flexural bend test. The results indicated a correlation between the alumina content and the sintering temperature, and between the flexural strength and its influence on the green machining conditions. An average tensile strength of 786 MPa was attained for the composition with an added content of 30 wt% of commercial alumina sintered at 1250 degrees C, pressed and machined under industrial conditions.
Resumo:
A nonlinear finite element model was developed to simulate the nonlinear response of three-leaf masonry specimens, which were subjected to laboratory tests with the aim of investigating the mechanical behaviour of multiple-leaf stone masonry walls up to failure. The specimens consisted of two external leaves made of stone bricks and mortar joints, and an internal leaf in mortar and stone aggregate. Different loading conditions, typologies of the collar joints, and stone types were taken into account. The constitutive law implemented in the model is characterized by a damage tensor, which allows the damage-induced anisotropy accompanying the cracking process to be described. To follow the post-peak behaviour of the specimens with sufficient accuracy it was necessary to make the damage model non-local, to avoid mesh-dependency effects related to the strain-softening behaviour of the material. Comparisons between the predicted and measured failure loads are quite satisfactory in most of the studied cases. (c) 2007 Elsevier Ltd. All rights reserved.