128 resultados para iron alloys
Resumo:
The paper presents and discusses experimental procedures, visual observations and test results considered important to obtain data that can be used in validation of constitutive relations and failure criteria. The aim is to investigate the combined effects of stress intensity, stress-triaxiality and Lode parameter on the material response and failure behavior of aluminum alloys. Smooth and pre-notched tensile and shear specimens were manufactured from both very thin sheets and thicker plates to cover a wide range of stress triaxialities and Lode parameters. In addition, modified Arcan specimens were designed allowing investigation of the effect of sudden changes in stress states and deformation modes on the material behavior. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The paper presents the development of a mechanical actuator using a shape memory alloy with a cooling system based on the thermoelectric effect (Seebeck-Peltier effect). Such a method has the advantage of reduced weight and requires a simpler control strategy as compared to other forced cooling systems. A complete mathematical model of the actuator was derived, and an experimental prototype was implemented. Several experiments are used to validate the model and to identify all parameters. A robust and nonlinear controller, based on sliding-mode theory, was derived and implemented. Experiments were used to evaluate the actuator closed-loop performance, stability, and robustness properties. The results showed that the proposed cooling system and controller are able to improve the dynamic response of the actuator. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The technology of self-reducing pellets for ferro-alloys production is becoming an emerging process due to the lower electric energy consumption and the improvement of metal recovery in comparison with the traditional process. This paper presents the effects of reduction temperature, addition of ferro-silicon and addition of slag forming agents for the production of high carbon ferro-chromium by utilization of self-reducing pellets. These pellets were composed of Brazilian chromium ore (chromite) concentrate, petroleum coke, Portland cement, ferro-silicon and slag forming components (silica and hydrated lime). The pellets were processed at 1 773 K, 1 823 K and 1 873 K using an induction furnace. The products obtained, containing slag and metallic phases, were analyzed by scanning electron microscopy and chemical analyses (XEDS). A large effect on the reduction time was observed by increasing the temperature from 1 773 K to 1 823 K for pellets without Fe-Si addition: around 4 times faster at 1 823 K than at 1 773 K for reaction fraction close to one. However, when the temperature was further increased from 1 823 K to 1 873 K the kinetics improved by double. At 1 773 K, the addition of 2% of ferro-silicon in the pellet resulted in an increasing reaction rate of around 6 times, in comparison with agglomerate without it. The addition of fluxing agents (silica and lime), which form initial slag before the reduction is completed, impaired the full reduction. These pellets became less porous after the reduction process.
Resumo:
The goal of this work is to investigate the reduction of chromium from a quaternary slag by carbon dissolved in liquid steel. Laboratory scale experiments were conducted to study the reduction of chromium oxides in the slag by carbon dissolved in the melt. These experiments were made under different conditions of slag basicity and amount of added carbon. Thermodynamic calculations based on Double Sublattice model were applied using the commercial software Thermo-Calc, with the IRSID database. The results obtained showed good correlation with practical and calculated results, making it possible to predict equilibrium conditions of the system and to determine the activities of chromium oxides in the slag.
Resumo:
The aim of this work is to study the reaction rate and the morphology of intermediate reaction products during iron ore reduction when iron ore and carbonaceous materials are agglomerated together with or without Portland cement. The reaction was performed at high temperatures, and used small size samples in order to minimise heat transfer constraints. Coke breeze and pure graphite were the carbonaceous materials employed. Portland cement was applied as a binder, and pellet diameters were in the range 5.6-6.5 mm. The experimental technique involved the measurement of the pellet weight loss, as well as the interruption of the reaction at different stages, in order to submit the partially reduced pellet to scanning electron microscopy. The experimental temperature was in the range 1423-1623 K, and the total reaction time varied from 240 to 1200 s. It was observed that above 1523 K the formation of liquid slag occurred inside the pellets, which partially dissolved iron oxides. The apparent activation energies obtained were 255 kJ mol(-1) for coke breeze containing pellets, and 230 kJ mol(-1) for those pellets containing graphite. It was possible to avoid heat transfer control of the reaction rate up to 1523 K by employing small composite pellets.
Resumo:
In the present work, the corrosion resistance of ferritic-martensitic EUROFER 97 and ODS-EUROFER steels was tested in solutions containing NaCl or H(2)SO(4) and KSCN, both at 25 degrees C. The results were compared to those of AISI 430 ferritic and AISI 410 martensitic conventional stainless steels. The as-received samples were tested by electrochemical techniques, specifically, electrochemical impedance spectroscopy, potentiodynamic polarization curves, and double-loop electrochemical potentiokinetic reactivation tests. The surfaces were observed by scanning electron microscopy after exposure to corrosive media. The results showed that EUROFER 97 and ODS-EUROFER alloys present similar corrosion resistance but lower than ferritic AISI 430 and martensitic 410 stainless steels.
Resumo:
The aim of this work is to study the reaction rate and the morphology of the intermediary reaction products during reduction of iron ore, when iron ore and carbonaceous material are agglomerated together as a carbon composite iron ore pellet. The reaction was performed at high temperatures, and in order to avoid heat transfer constraints small size samples were used. The carbonaceous materials employed were coke breeze and pure graphite. Portland cement was employed as a binder, and the pellets diameter was 5.2 mm. The experimental technique involved the measurement of the pellets weight loss, as well as interruption of the reaction at different stages in order to submit the partially reduced pellet to scanning electron microscopy. It has been observed that above 1523 K there is the formation of liquid slag inside the pellets, which partially dissolves iron oxides. The apparent activation energies obtained were 255 kJ/mol for coke breeze containing pellets, and 230 kJ/mol for those pellets containing graphite. It was possible to avoid heat transfer control of the reaction rate up to 1523 K by employing small composite pellets.
Resumo:
This paper discusses the effects of temperature, addition of ferro-silicon and fluxing agents for the production of high carbon ferro-chromium by self-reducing process. The use of self-reducing agglomerates for ferro-alloys production is becoming an emerging processing technology due to lowering the electric energy consumption and improving the metal recovery in comparison with traditional ones. The self-reducing pellets were composed by chromite, petroleum coke, cement and small (0.1% - 2%) addition of ferro-silicon. The slag composition was adjusted by addition of fluxing agents. The reduction of pellets was carried out at 1773K (1500 degrees C), 1823K (1550 degrees C) and 1873K (1600 degrees C) by using induction furnace. The products obtained, containing slag and metallic phases, were analyzed by scanning electron microscopy and chemical analyses (XEDS). By increasing temperature from 1773K to 1823K large effect on the reduction time was observed. It decreased from 30 minutes to 10 minutes, for reaching around 0.98 reduction fraction. No significant effect on reduction time was observed when the reduction temperature was increased from 1823K to 1873K. At 1773K, the addition of 2% of ferro-silicon in the pellet resulted in an increasing reaction rate of around 6 times, in comparison with agglomerate without this addition. The addition of fluxing agents (silica and hydrated lime) has effect on reduction time (inverse relationship) and the pellets become less porous after reduction.
Resumo:
The production of electronic equipment, such as computers and cell phones, and, consequently, batteries, has increased dramatically. One of the types of batteries whose production and consumption has increased in recent times is the nickel metal hydride (NiMH) battery. This study evaluated a hydrometallurgical method of recovery of rare earths and a simple method to obtain a solution rich in Ni-Co from spent NiMH batteries. The active materials from both electrodes were manually removed from the accumulators and leached. Several acid and basic solutions for the recovery of rare earths were evaluated. Results showed that more than 98 wt.% of the rare earths were recovered as sulfate salts by dissolution with sulfuric acid, followed by selective precipitation at pH 1.2 using sodium hydroxide. The complete process. precipitation at pH 1.2 followed by precipitation at pH 7, removed about 100 wt.% of iron and 70 wt.% of zinc from the leaching solution. Results were similar to those found in studies that used solvent extraction. This method is easy, economic, and does not pose environmental threats of solvent extraction. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Before one models the effect of plastic deformation on magnetoacoustic emission (MAE), one must first treat non-180 degrees domain wall motion. In this paper, we take the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model and modify it to treat non-180 degrees wall motion. We then insert a modified stress-dependent Jiles-Atherton model, which treats plastic deformation, into the modified ABBM model to treat MAE and magnetic Barkhausen noise (HBN). In fitting the dependence of these quantities on plastic deformation, we apply a model for when deformation gets into the stage where dislocation tangles are formed, noting two chief effects, one due to increased density of emission centers owing to increased dislocation density, and the other due to a more gentle increase in the residual stress in the vicinity of the dislocation tangles as deformation is increased.
Resumo:
The phenomenon of magnetoacoustic emission (MAE) has been ascribed usually to one of two origins: either (1) motion of non-180 degrees domain walls or (2) creation or annihilation of domains. In this paper, we present strong evidence for the argument that the only origin for MAE is motion of non-180 degrees domain walls. The proof is evident as a result of measurements of zero MAE for a wide range of stress in the isotropic zero magnetostrictive polycrystalline alloy of iron with 6.5% silicon. We also explain why it was that the alternative origin was proposed and how the data in that same experiment can be reinterpreted to be consistent with the non-180 degrees wall motion origin. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work analyses pellets prepared with iron ore that has been mechanically activated by high energy ball milling. Pellet feed iron ore was submitted to high-energy ball milling for 60 minutes, and the resulting material was analysed through measurements of particle size and specific surface area, as well as X-ray diffraction. Pellets were prepared from this material. The pellets were heated at temperatures ranging from 1000 to 1250 degrees C in a muffle furnace, and submitted to the maximum temperature during 10 - 12 minutes. The samples were then tested regarding crushing strength, densification and porosity, and were examined in a scanning electronic microscope. The results were compared to those obtained with similar samples made from non-milled pellet feed. It has been shown that through high-energy ball milling of iron ore it is possible to achieve pellets presenting high densification and compressive strength at firing temperatures lower than the usual ones.
Resumo:
Commercial bentonite (BFN) and organoclay (WS35), as well as iron oxide/clay composite (Mag_BFN) and iron/oxide organoclay composite (Mag_S35) were prepared for toluene and naphthalene sorption. Mag_BFN and Mag_S35 were obtained, respectively, by the precipitation of iron oxide hydrates onto sodium BFN and S35 clay particles. The materials were characterized by powder X-ray diffraction (XRD), X-ray Fluorescence (XRF), and TG and DTA. From XRF results and TG data on calcined mass basis, a quantitative method was developed to estimate the iron compound contents of the composites, as well as the organic matter content present in WS35 and Mag_S35.
Resumo:
The thermoelastic properties of ferropericlase Mg(1-x)Fe(x)O (x = 0.1875) throughout the iron high-to-low spin cross-over have been investigated by first principles at Earth`s lower mantle conditions. This cross-over has important consequences for elasticity such as an anomalous bulk modulus (K(S)) reduction. At room temperature the anomaly is somewhat sharp in pressure but broadens with increasing temperature. Along a typical geotherm it occurs across most of the lower mantle with a more significant K(S) reduction at approximate to 1,400-1,600 km depth. This anomaly might also cause a reduction in the effective activation energy for diffusion creep and lead to a viscosity minimum in the mid-lower mantle, in apparent agreement with results from inversion of data related with mantle convection and postglacial rebound.
Resumo:
A new assessment of the aluminum corner of the quaternary Al-Fe-Mn-Si system has been made that extends beyond the COST-507 database. This assessment makes use of a recent, improved description of the ternary Al-Fe-Si system. In the present work, modeling of the Al-rich corner of the quaternary Al-Fe-Mn-Si system has been carried out by introducing Fe solubility into the so-called alpha-AlMnSi and beta-AlMnSi phases of the Al-Mn-Si system. A critical review of the data available on the quaternary system is presented and used for the extension of the description of these ternary phases into the quaternary Al-Fe-Mn-Si.