84 resultados para finite element homogenization method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alkali-aggregate reaction (AAR) is a chemical reaction that provokes a heterogeneous expansion of concrete and reduces important properties such as Young's modulus, leading to a reduction in the structure's useful life. In this study, a parametric model is employed to determine the spatial distribution of the concrete expansion, combining normalized factors that influence the reaction through an AAR expansion law. Optimization techniques were employed to adjust the numerical results and observations in a real structure. A three-dimensional version of the model has been implemented in a finite element commercial package (ANSYS(C)) and verified in the analysis of an accelerated mortar test. Comparisons were made between two AAR mathematical descriptions for the mechanical phenomenon, using the same methodology, and an expansion curve obtained from experiment. Some parametric studies are also presented. The numerical results compared very well with the experimental data validating the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the effects of indenter tip roundness oil the load-depth indentation curves were analyzed using finite element modeling. The tip roundness level was Studied based on the ratio between tip radius and maximum penetration depth (R/h(max)), which varied from 0.02 to 1. The proportional Curvature constant (C), the exponent of depth during loading (alpha), the initial unloading slope (S), the correction factor (beta), the level of piling-up or sinking-in (h(c)/h(max)), and the ratio h(max)/h(f) are shown to be strongly influenced by the ratio R/h(max). The hardness (H) was found to be independent of R/h(max) in the range studied. The Oliver and Pharr method was successful in following the variation of h(c)/h(max) with the ratio R/h(max) through the variation of S with the ratio R/h(max). However, this work confirmed the differences between the hardness values calculated using the Oliver-Pharr method and those obtained directly from finite element calculations; differences which derive from the error in area calculation that Occurs when given combinations of indented material properties are present. The ratio of plastic work to total work (W(p)/W(t)) was found to be independent of the ratio R/h(max), which demonstrates that the methods for the Calculation of mechanical properties based on the *indentation energy are potentially not Susceptible to errors caused by tip roundness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shot peening is a cold-working mechanical process in which a shot stream is propelled against a component surface. Its purpose is to introduce compressive residual stresses on component surfaces for increasing the fatigue resistance. This process is widely applied in springs due to the cyclical loads requirements. This paper presents a numerical modelling of shot peening process using the finite element method. The results are compared with experimental measurements of the residual stresses, obtained by the X-rays diffraction technique, in leaf springs submitted to this process. Furthermore, the results are compared with empirical and numerical correlations developed by other authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Embedded sensitivity analysis has proven to be a useful tool in finding optimum positions of structure reinforcements. However, it was not clear how sensitivities obtained from the embedded sensitivity method were related to the normal mode, or operational mode, associated to the frequency of interest. In this work, this relationship is studied based on a finite element of a slender sheet metal piece, with preponderant bending modes. It is shown that higher sensitivities always occur at nodes or antinodes of the vibrating system. [DOI: 10.1115/1.4002127]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an accurate and efficient solution for the random transverse and angular displacement fields of uncertain Timoshenko beams. Approximate, numerical solutions are obtained using the Galerkin method and chaos polynomials. The Chaos-Galerkin scheme is constructed by respecting the theoretical conditions for existence and uniqueness of the solution. Numerical results show fast convergence to the exact solution, at excellent accuracies. The developed Chaos-Galerkin scheme accurately approximates the complete cumulative distribution function of the displacement responses. The Chaos-Galerkin scheme developed herein is a theoretically sound and efficient method for the solution of stochastic problems in engineering. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a formulation to deal with dynamic thermomechanical problems by the finite element method. The proposed methodology is based on the minimum potential energy theorem written regarding nodal positions, not displacements, to solve the mechanical problem. The thermal problem is solved by a regular finite element method. Such formulation has the advantage of being simple and accurate. As a solution strategy, it has been used as a natural split of the thermomechanical problem, usually called isothermal split or isothermal staggered algorithm. Usual internal variables and the additive decomposition of the strain tensor have been adopted to model the plastic behavior. Four examples are presented to show the applicability of the technique. The results are compared with other authors` numerical solutions and experimental results. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the Askey-Wiener scheme and the Galerkin method are used to obtain approximate solutions to stochastic beam bending on Winkler foundation. The study addresses Euler-Bernoulli beams with uncertainty in the bending stiffness modulus and in the stiffness of the foundation. Uncertainties are represented by parameterized stochastic processes. The random behavior of beam response is modeled using the Askey-Wiener scheme. One contribution of the paper is a sketch of proof of existence and uniqueness of the solution to problems involving fourth order operators applied to random fields. From the approximate Galerkin solution, expected value and variance of beam displacement responses are derived, and compared with corresponding estimates obtained via Monte Carlo simulation. Results show very fast convergence and excellent accuracies in comparison to Monte Carlo simulation. The Askey-Wiener Galerkin scheme presented herein is shown to be a theoretically solid and numerically efficient method for the solution of stochastic problems in engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This communication proposes a simple way to introduce fibers into finite element modelling. This is a promising formulation to deal with fiber-reinforced composites by the finite element method (FEM), as it allows the consideration of short or long fibers placed arbitrarily inside a continuum domain (matrix). The most important feature of the formulation is that no additional degree of freedom is introduced into the pre-existent finite element numerical system to consider any distribution of fiber inclusions. In other words, the size of the system of equations used to solve a non-reinforced medium is the same as the one used to solve the reinforced counterpart. Another important characteristic is the reduced work required by the user to introduce fibers, avoiding `rebar` elements, node-by-node geometrical definitions or even complex mesh generation. An additional characteristic of the technique is the possibility of representing unbounded stresses at the end of fibers using a finite number of degrees of freedom. Further studies are required for non-linear applications in which localization may occur. Along the text the linear formulation is presented and the bounded connection between fibers and continuum is considered. Four examples are presented, including non-linear analysis, to validate and show the capabilities of the formulation. Copyright (c) 2007 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is related to the so-called non-conventional finite element formulations. Essentially, a methodology for the enrichment of the initial approximation which is typical of the meshless methods and based on the clouds concept is introduced in the hybrid-Trefftz formulation for plane elasticity. The formulation presented allows for the approximation and direct enrichment of two independent fields: stresses in the domains and displacements on the boundaries of the elements. Defined by a set of elements and interior boundaries sharing a common node, the cloud notion is employed to select the enrichment support for the approximation fields. The numerical analysis performed reveals an excellent performance of the resulting formulation, characterized by the good approximation ability and a reduced computational effort. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is no normalized test to assess the shear strength of vertical interfaces of interconnected masonry walls. The approach used to evaluate this strength is normally indirect and often unreliable. The aim of this study is to propose a new test specimen to eliminate this deficiency. The main features of the proposed specimen are failure caused by shear stress on the vertical interface and a small number of units (blocks). The paper presents a numerical analysis based on the finite element method, with the purpose of showing the theoretical performance of the designed specimen, in terms of its geometry, boundary conditions, and loading scheme, and describes an experimental program using the specimen built with full- and third-scale clay blocks. The main conclusions are that the proposed specimen is easy to build and is appropriate to evaluate the sheaf strength of vertical interfaces of masonry walls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the numerical assessment of the influence of parameters such as pre-compression level, aspect ratio, vertical and horizontal reinforcement ratios and boundary conditions on the lateral strength of masonry walls under in-plane loading. The numerical study is performed through the software DIANA (R) based on the Finite Element Method. The validation of the numerical model is carried out from a database of available experimental results on masonry walls tested under cyclic lateral loading. Numerical results revealed that boundary conditions play a central role on the lateral behavior of masonry walls under in-plane loading and determine the influence of level of pre-compression as well as the reinforcement ratio on the wall strength. The lateral capacity of walls decreases with the increase of aspect ratio and with the decrease of pre-compression. Vertical steel bars appear to have almost no influence in the shear strength of masonry walls and horizontal reinforcement only increases the lateral strength of masonry walls if the shear response of the walls is determinant for failure, which is directly related to the boundary conditions. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a class of two-dimensional problems in classical linear elasticity for which material overlapping occurs in the absence of singularities. Of course, material overlapping is not physically realistic, and one possible way to prevent it uses a constrained minimization theory. In this theory, a minimization problem consists of minimizing the total potential energy of a linear elastic body subject to the constraint that the deformation field must be locally invertible. Here, we use an interior and an exterior penalty formulation of the minimization problem together with both a standard finite element method and classical nonlinear programming techniques to compute the minimizers. We compare both formulations by solving a plane problem numerically in the context of the constrained minimization theory. The problem has a closed-form solution, which is used to validate the numerical results. This solution is regular everywhere, including the boundary. In particular, we show numerical results which indicate that, for a fixed finite element mesh, the sequences of numerical solutions obtained with both the interior and the exterior penalty formulations converge to the same limit function as the penalization is enforced. This limit function yields an approximate deformation field to the plane problem that is locally invertible at all points in the domain. As the mesh is refined, this field converges to the exact solution of the plane problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present research studies the behavior of reinforced concrete locking beams supported by two capped piles with the socket embedded; used as connections for pre-cast concrete structures. The effect provoked by locking the beam on the pile-caps when supported by the lateral socket walls was evaluated. Three-dimensional numerical analyses using software based on the finite element method (FEM) were developed considering the nonlinear physical behavior of the material. To evaluate the adopted software, a comparative analysis was made using the numerical and experimented results obtained from other software. In the pile caps studied, a variation in the wall thickness, socket interface, strut angle inclination and action on beam. The results show that the presence of a beam does not significantly change pile cap behavior and that the socket wall is able to effectively transfer the force from the beam to the pile caps. By the tensions on the bars of longitudinal reinforcement, it was possible to obtain the force on the tie and the strut angle inclination before the collapse of models. It was found that the angles present more inclinations than those used in the design, which was made based on a strut-and-tie model. More results are available at http://www.set.eesc.usp.br/pdf/download/2009ME_RodrigoBarros.pdf

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an analytical method for analyzing trusses with severe geometrically nonlinear behavior. The main objective is to find analytical solutions for trusses with different axial forces in the bars. The methodology is based on truss kinematics, elastic constitutive laws and equilibrium of nodal forces. The proposed formulation can be applied to hyper elastic materials, such as rubber and elastic foams. A Von Mises truss with two bars made by different materials is analyzed to show the accuracy of this methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a performance analysis of multimodal passive vibration control of a sandwich beam using shear piezoelectric materials, embedded in a sandwich beam core, connected to independent resistive shunt circuits. Shear piezoelectric actuators were recently shown to be more interesting for higher frequencies and stiffer structures. In particular, for shunted damping, it was shown that equivalent material loss factors of up to 31% can be achieved by optimizing the shunt circuit. In the present work, special attention is given to the design of multimodal vibration control through independent shunted shear piezoelectric sensors. In particular, a parametric analysis is performed to evaluate optimal configurations for a set of modes to be damped. Then, a methodology to evaluate the modal damping resulting from each shunted piezoelectric sensor is presented using the modal strain energy method. Results show that modal damping factors of 1%-2% can be obtained for three selected vibration modes.