121 resultados para double electron electron resonance


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present the measurement of nonphotonic electron production at high transverse momentum (p(T) > 2.5 GeV/c) in p + p collisions at root s = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured nonphotonic electron cross sections with previously published RHIC data and perturbative quantum chromodynamics calculations. Using the relative contributions of B and D mesons to nonphotonic electrons, we determine the integrated cross sections of electrons (e++e-2/2) at 3 GeV/c < p(T) < 10 GeV/c from bottom and charm meson decays to be [(d sigma((B -> e)+(B -> D -> e))/(dy(e))](ye=0) 4.0 +/- 0.5(stat) +/- 1.1(syst) nb and [(d sigma(D -> e))/(dy(e))](ye=0) = 6.2 +/- 0.7(stat) +/- 1.5(syst) nb, respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The contribution of B meson decays to nonphotonic electrons, which are mainly produced by the semileptonic decays of heavy-flavor mesons, in p + p collisions at root s = 200 GeV has been measured using azimuthal correlations between nonphotonic electrons and hadrons. The extracted B decay contribution is approximately 50% at a transverse momentum of p(T) >= 5 GeV/c. These measurements constrain the nuclear modification factor for electrons from B and D meson decays. The result indicates that B meson production in heavy ion collisions is also suppressed at high p(T).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The structure of laser glasses in the system (Y(2)O(3))(0.2){(Al(2)O(3))(x))(B(2)O(3))(0.8-x)} (0.15 <= x <= 0.40) has been investigated by means of (11)B, (27)Al, and (89)Y solid state NMR as well as electron spin echo envelope modulation (ESEEM) of Yb-doped samples. The latter technique has been applied for the first time to an aluminoborate glass system. (11)B magic-angle spinning (MAS)-NMR spectra reveal that, while the majority of the boron atoms are three-coordinated over the entire composition region, the fraction of three-coordinated boron atoms increases significantly with increasing x. Charge balance considerations as well as (11)B NMR lineshape analyses suggest that the dominant borate species are predominantly singly charged metaborate (BO(2/2)O(-)), doubly charged pyroborate (BO(1/2)(O(-))(2)), and (at x = 0.40) triply charged orthoborate groups. As x increases along this series, the average anionic charge per trigonal borate group increases from 1.38 to 2.91. (27)Al MAS-NMR spectra show that the alumina species are present in the coordination states four, five and six, and the fraction of four-coordinated Al increases markedly with increasing x. All of the Al coordination states are in intimate contact with both the three-and the four-coordinate boron species and vice versa, as indicated by (11)B/(27)Al rotational echo double resonance (REDOR) data. These results are consistent with the formation of a homogeneous, non-segregated glass structure. (89)Y solid state NMR spectra show a significant chemical shift trend, reflecting that the second coordination sphere becomes increasingly ""aluminate-like'' with increasing x. This conclusion is supported by electron spin echo envelope modulation (ESEEM) data of Yb-doped glasses, which indicate that both borate and aluminate species participate in the medium range structure of the rare-earth ions, consistent with a random spatial distribution of the glass components.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We introduce an analytical approximation scheme to diagonalize parabolically confined two-dimensional (2D) electron systems with both the Rashba and Dresselhaus spin-orbit interactions. The starting point of our perturbative expansion is a zeroth-order Hamiltonian for an electron confined in a quantum wire with an effective spin-orbit induced magnetic field along the wire, obtained by properly rotating the usual spin-orbit Hamiltonian. We find that the spin-orbit-related transverse coupling terms can be recast into two parts W and V, which couple crossing and noncrossing adjacent transverse modes, respectively. Interestingly, the zeroth-order Hamiltonian together with W can be solved exactly, as it maps onto the Jaynes-Cummings model of quantum optics. We treat the V coupling by performing a Schrieffer-Wolff transformation. This allows us to obtain an effective Hamiltonian to third order in the coupling strength k(R)l of V, which can be straightforwardly diagonalized via an additional unitary transformation. We also apply our approach to other types of effective parabolic confinement, e. g., 2D electrons in a perpendicular magnetic field. To demonstrate the usefulness of our approximate eigensolutions, we obtain analytical expressions for the nth Landau-level g(n) factors in the presence of both Rashba and Dresselhaus couplings. For small values of the bulk g factors, we find that spin-orbit effects cancel out entirely for particular values of the spin-orbit couplings. By solving simple transcendental equations we also obtain the band minima of a Rashba-coupled quantum wire as a function of an external magnetic field. These can be used to describe Shubnikov-de Haas oscillations. This procedure makes it easier to extract the strength of the spin-orbit interaction in these systems via proper fitting of the data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We derive a closed analytical expression for the exchange energy of the three-dimensional interacting electron gas in strong magnetic fields, which goes beyond the quantum limit (L=0) by explicitly including the effect of the second, L=1, Landau level and arbitrary spin polarization. The inclusion of the L=1 level brings the fields to which the formula applies closer to the laboratory range, as compared to previous expressions, valid only for L=0 and complete spin polarization. We identify and explain two distinct regimes separated by a critical density n(c). Below n(c), the per particle exchange energy is lowered by the contribution of L=1, whereas above n(c) it is increased. As special cases of our general equation we recover various known more limited results for higher fields, and we identify and correct a few inconsistencies in some of these earlier expressions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Measured and calculated differential cross sections for elastic (rotationally unresolved) electron scattering from two primary alcohols, methanol (CH(3)OH) and ethanol (C(2)H(5)OH), are reported. The measurements are obtained using the relative flow method with helium as the standard gas and a thin aperture as the collimating target gas source. The relative flow method is applied without the restriction imposed by the relative flow pressure conditions on helium and the unknown gas. The experimental data were taken at incident electron energies of 1, 2, 5, 10, 15, 20, 30, 50, and 100 eV and for scattering angles of 5 degrees-130 degrees. There are no previous reports of experimental electron scattering differential cross sections for CH(3)OH and C(2)H(5)OH in the literature. The calculated differential cross sections are obtained using two different implementations of the Schwinger multichannel method, one that takes all electrons into account and is adapted for parallel computers, and another that uses pseudopotentials and considers only the valence electrons. Comparison between theory and experiment shows that theory is able to describe low-energy electron scattering from these polyatomic targets quite well.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Bohmian mechanics, a version of quantum mechanics that ascribes world lines to electrons, we can meaningfully ask about an electron's instantaneous speed relative to a given inertial frame. Interestingly, according to the relativistic version of Bohmian mechanics using the Dirac equation, a massive particle's speed is less than or equal to the speed of light, but not necessarily less. That is, there are situations in which the particle actually reaches the speed of light-a very nonclassical behavior. That leads us to the question of whether such situations can be arranged experimentally. We prove a theorem, Theorem 5, implying that for generic initial wave functions the probability that the particle ever reaches the speed of light, even if at only one point in time, is zero. We conclude that the answer to the question is no. Since a trajectory reaches the speed of light whenever the quantum probability current (psi) over bar gamma(mu)psi is a lightlike 4-vector, our analysis concerns the current vector field of a generic wave function and may thus be of interest also independently of Bohmian mechanics. The fact that the current is never spacelike has been used to argue against the possibility of faster-than-light tunneling through a barrier, a somewhat similar question. Theorem 5, as well as a more general version provided by Theorem 6, are also interesting in their own right. They concern a certain property of a function psi : R(4) -> C(4) that is crucial to the question of reaching the speed of light, namely being transverse to a certain submanifold of C(4) along a given compact subset of space-time. While it follows from the known transversality theorem of differential topology that this property is generic among smooth functions psi : R(4) -> C(4), Theorem 5 asserts that it is also generic among smooth solutions of the Dirac equation. (C) 2010 American Institute of Physics. [doi:10.1063/1.3520529]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have investigated the stability, electronic properties, Rayleigh (elastic), and Raman (inelastic) depolarization ratios, infrared and Raman absorption vibrational spectra of fullerenols [C(60)(OH)(n)] with different degrees of hydroxylation by using all-electron density-functional-theory (DFT) methods. Stable arrangements of these molecules were found by means of full geometry optimizations using Becke's three-parameter exchange functional with the Lee, Yang, and Parr correlation functional. This DFT level has been combined with the 6-31G(d,p) Gaussian-type basis set, as a compromise between accuracy and capability to treat highly hydroxylated fullerenes, e.g., C(60)(OH)(36). Thus, the molecular properties of fullerenols were systematically analyzed for structures with n=1, 2, 3, 4, 8, 10, 16, 18, 24, 32, and 36. From the electronic structure analysis of these molecules, we have evidenced an important effect related to the weak chemical reactivity of a possible C(60)(OH)(24) isomer. To investigate Raman scattering and the vibrational spectra of the different fullerenols, frequency calculations are carried out within the harmonic approximation. In this case a systematic study is only performed for n=1-4, 8, 10, 16, 18, and 24. Our results give good agreements with the expected changes in the spectral absorptions due to the hydroxylation of fullerenes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The cuticular surfaces of Cyphophthalmi (Opiliones) were studied in detail, covering a wide range of their taxonomic diversity. Previously unknown structures are described, including a sexually dimorphic row of spines and glandular openings on leg I of Fangensis cavernarum. Scanning electron micrographs of the prosomal paired hairs and the subapical process are provided for the first time. Evidence for the multi-pored nature of the shaft of solenidia as well as the hollowed nature and absence of wall pores of sensilla chaetica are also shown for the first time using scanning electron microscopy. The prosomal paired hairs may constitute a novel autapomorphy for Cyphophthalmi, as they are absent in all studied members of the other species of Opiliones. Finally, the variation in shape of some of the structures examined may be of great taxonomic value.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The performance of a new trickling filter (TF) configuration composed of an upper compartment for nitrification and a lower compartment for denitrification of effluent from a UASB reactor treating domestic sewage was evaluated. The TF was packed with new plastic material characterized by its durability and high percentage of void spaces. The feasibility of using the reduced compounds present in the biogas produced by a UASB reactor as electron donor for denitrification was also evaluated. Efficient nitrification and denitrification was achieved for the mean hydraulic (5.6 m(3) m(-2) d(-1)) organic (0.26 kg COD m(-3) d(-1)) and ammonia-N (0.08 kg m(-3) d(-1)) loading rates applied, resulting in ammonia-N removal ranging from 60 to 74%. The final effluent presented ammonia-N lower than 13 mg L(-1). Despite the presence of dissolved oxygen (DO) in the denitrification compartment, its performance was considered quite satisfactory and final nitrate concentrations were lower than 10 mg L(-1). The results indicate that methane was the main electron donor used for denitrification. Additionally, denitrification can probably be improved by avoiding high DO concentration in the denitrification compartment and by enhancing biogas transfer in the anoxic zone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The distribution of Cr and N in a high-temperature gas-nitrided stainless steel was measured by using a scanning electron microscope-coupled wavelength-dispersive X-ray spectrometer and the results were related to the microhardness profile of the hardened case. The experimental spectrometric procedure was optimized to consistently measure N contents varying between 0.1 and 0.8 wt.% in martensite and between 18.3 and 21.6 wt.% in nitrides, as well as Cr contents ranging from 11.5 to 17.0 wt.%. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For specific blanket and divertor applications in future fusion power reactors a replacement of presently considered reduced activation ferritic martensitic (RAFM) steels as a structural material by suitable oxide dispersion strengthened ferritic martensitic steels would allow a substantial increase of the operating temperature from similar to 823 to about 923 K. Due to this reason the RAFM-alloy ODS-Eurofer has already been developed and produced with industrial partners. In the He-cooled modular divertor concept, where temperatures above 923 K will arise, an ODS-steel with a purely ferritic matrix is advantageous, because of missing phase transitions. Due to this reason, a special ferritic ODS-steel is being manufactured as well. In this work the microstructures of these two ODS-alloy types, analysed mainly by high resolution TEM are compared, with respect to different manufacturing processes. In addition first results of high resolution EBSD scans together with determined orientation maps of the RAFM steel ODS-Eurofer will also be presented. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The metastable phase diagram of the BCC-based ordering equilibria in the Ti-Fe system has been calculated using a truncated cluster expansion, through the combination of FP-LAPW and cluster variation method (CVM) in the irregular tetrahedron cluster approximation. The results are compared with phenomenological CVM assessments of the system and suggest that the value for the experimental formation enthalpy of the B2-TiFe compound should be significantly more negative than the currently assessed value. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electron beam induced second harmonic generation (SHG) is studied in Er(3+) doped PbO-GeO(2) glasses containing silver nanoparticles with concentrations that are controlled by the heat-treatment of the samples. The SHG is observed at T = 4.2 K using a p-polarized laser beam at 1064 nm. Enhancement of the SHG is observed in the samples that are submitted to electron beam incidence. The highest value of the nonlinear susceptibility, 2.08 pm/V, is achieved for the sample heat-treated during 72 h and submitted to an electron beam current of 15 nA. The samples that were not exposed to the electron beam present a susceptibility of a parts per thousand 0.5 pm/V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The etiological agent of maize white spot (MWS) disease has been a subject of controversy and discussion. Initially the disease was described as Phaeosphaeria leaf spot caused by Phaeosphaeria maydis. Other authors have Suggested the existence of different fungal species causing similar symptoms. Recently, a bacterium, Pantoea ananatis, was described as the causal agent of this disease. The purpose of this Study was to offer additional information on the correct etiology of this disease by providing visual evidence of the presence of the bacterium in the interior of the MWS lesions by using transmission electron microscopy (TEM) and molecular techniques. The TEM allowed Visualization of a large amount of bacteria in the intercellular spaces of lesions collected from both artificially and naturally infected plants. Fungal structures were not visualized in young lesions. Bacterial primers for the 16S rRNA and rpoB genes were used in PCR reactions to amplify DNA extracted from water-soaked (young) and necrotic lesions. The universal fungal oligonucleotide ITS4 was also included to identity the possible presence of fungal structures inside lesions. Positive PCR products from water-soaked lesions, both from naturally and artificially inoculated plants, were produced with bacterial primers, whereas no amplification was observed when ITS4 oligonucleotide was used. On the other hand, DNA amplification with ITS4 primer was observed when DNA was isolated from necrotic (old) lesions. These results reinforced previous report of P. ananatis as the primary pathogen and the hypothesis that fungal species may colonize lesions pre-established by P. ananatis.